diff options
Diffstat (limited to 'theories7/Reals/Rtrigo_def.v')
-rw-r--r-- | theories7/Reals/Rtrigo_def.v | 357 |
1 files changed, 0 insertions, 357 deletions
diff --git a/theories7/Reals/Rtrigo_def.v b/theories7/Reals/Rtrigo_def.v deleted file mode 100644 index 0897416b..00000000 --- a/theories7/Reals/Rtrigo_def.v +++ /dev/null @@ -1,357 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Rtrigo_def.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*) - -Require Rbase. -Require Rfunctions. -Require SeqSeries. -Require Rtrigo_fun. -Require Max. -V7only [ Import nat_scope. Import Z_scope. Import R_scope. ]. -Open Local Scope R_scope. - -(*****************************) -(* Definition of exponential *) -(*****************************) -Definition exp_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``/(INR (fact i))*(pow x i)`` l). - -Lemma exp_cof_no_R0 : (n:nat) ``/(INR (fact n))<>0``. -Intro. -Apply Rinv_neq_R0. -Apply INR_fact_neq_0. -Qed. - -Lemma exist_exp : (x:R)(SigT R [l:R](exp_in x l)). -Intro; Generalize (Alembert_C3 [n:nat](Rinv (INR (fact n))) x exp_cof_no_R0 Alembert_exp). -Unfold Pser exp_in. -Trivial. -Defined. - -Definition exp : R -> R := [x:R](projT1 ? ? (exist_exp x)). - -Lemma pow_i : (i:nat) (lt O i) -> (pow R0 i)==R0. -Intros; Apply pow_ne_zero. -Red; Intro; Rewrite H0 in H; Elim (lt_n_n ? H). -Qed. - -(*i Calculus of $e^0$ *) -Lemma exist_exp0 : (SigT R [l:R](exp_in R0 l)). -Apply Specif.existT with R1. -Unfold exp_in; Unfold infinit_sum; Intros. -Exists O. -Intros; Replace (sum_f_R0 ([i:nat]``/(INR (fact i))*(pow R0 i)``) n) with R1. -Unfold R_dist; Replace ``1-1`` with R0; [Rewrite Rabsolu_R0; Assumption | Ring]. -Induction n. -Simpl; Rewrite Rinv_R1; Ring. -Rewrite tech5. -Rewrite <- Hrecn. -Simpl. -Ring. -Unfold ge; Apply le_O_n. -Defined. - -Lemma exp_0 : ``(exp 0)==1``. -Cut (exp_in R0 (exp R0)). -Cut (exp_in R0 R1). -Unfold exp_in; Intros; EApply unicity_sum. -Apply H0. -Apply H. -Exact (projT2 ? ? exist_exp0). -Exact (projT2 ? ? (exist_exp R0)). -Qed. - -(**************************************) -(* Definition of hyperbolic functions *) -(**************************************) -Definition cosh : R->R := [x:R]``((exp x)+(exp (-x)))/2``. -Definition sinh : R->R := [x:R]``((exp x)-(exp (-x)))/2``. -Definition tanh : R->R := [x:R]``(sinh x)/(cosh x)``. - -Lemma cosh_0 : ``(cosh 0)==1``. -Unfold cosh; Rewrite Ropp_O; Rewrite exp_0. -Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | DiscrR]. -Qed. - -Lemma sinh_0 : ``(sinh 0)==0``. -Unfold sinh; Rewrite Ropp_O; Rewrite exp_0. -Unfold Rminus Rdiv; Rewrite Rplus_Ropp_r; Apply Rmult_Ol. -Qed. - -Definition cos_n [n:nat] : R := ``(pow (-1) n)/(INR (fact (mult (S (S O)) n)))``. - -Lemma simpl_cos_n : (n:nat) (Rdiv (cos_n (S n)) (cos_n n))==(Ropp (Rinv (INR (mult (mult (2) (S n)) (plus (mult (2) n) (1)))))). -Intro; Unfold cos_n; Replace (S n) with (plus n (1)); [Idtac | Ring]. -Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult. -Rewrite Rinv_Rinv. -Replace ``(pow ( -1) n)*(pow ( -1) (S O))*/(INR (fact (mult (S (S O)) (plus n (S O)))))*(/(pow ( -1) n)*(INR (fact (mult (S (S O)) n))))`` with ``((pow ( -1) n)*/(pow ( -1) n))*/(INR (fact (mult (S (S O)) (plus n (S O)))))*(INR (fact (mult (S (S O)) n)))*(pow (-1) (S O))``; [Idtac | Ring]. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Unfold pow; Rewrite Rmult_1r. -Replace (mult (S (S O)) (plus n (S O))) with (S (S (mult (S (S O)) n))); [Idtac | Ring]. -Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rinv_Rmult; Try (Apply not_O_INR; Discriminate). -Rewrite <- (Rmult_sym ``-1``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Replace (S (mult (S (S O)) n)) with (plus (mult (S (S O)) n) (S O)); [Idtac | Ring]. -Rewrite mult_INR; Rewrite Rinv_Rmult. -Ring. -Apply not_O_INR; Discriminate. -Replace (plus (mult (S (S O)) n) (S O)) with (S (mult (S (S O)) n)); [Apply not_O_INR; Discriminate | Ring]. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. -Apply pow_nonzero; DiscrR. -Apply INR_fact_neq_0. -Apply pow_nonzero; DiscrR. -Apply Rinv_neq_R0; Apply INR_fact_neq_0. -Qed. - -Lemma archimed_cor1 : (eps:R) ``0<eps`` -> (EX N : nat | ``/(INR N) < eps``/\(lt O N)). -Intros; Cut ``/eps < (IZR (up (/eps)))``. -Intro; Cut `0<=(up (Rinv eps))`. -Intro; Assert H2 := (IZN ? H1); Elim H2; Intros; Exists (max x (1)). -Split. -Cut ``0<(IZR (INZ x))``. -Intro; Rewrite INR_IZR_INZ; Apply Rle_lt_trans with ``/(IZR (INZ x))``. -Apply Rle_monotony_contra with (IZR (INZ x)). -Assumption. -Rewrite <- Rinv_r_sym; [Idtac | Red; Intro; Rewrite H5 in H4; Elim (Rlt_antirefl ? H4)]. -Apply Rle_monotony_contra with (IZR (INZ (max x (1)))). -Apply Rlt_le_trans with (IZR (INZ x)). -Assumption. -Repeat Rewrite <- INR_IZR_INZ; Apply le_INR; Apply le_max_l. -Rewrite Rmult_1r; Rewrite (Rmult_sym (IZR (INZ (max x (S O))))); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Repeat Rewrite <- INR_IZR_INZ; Apply le_INR; Apply le_max_l. -Rewrite <- INR_IZR_INZ; Apply not_O_INR. -Red; Intro;Assert H6 := (le_max_r x (1)); Cut (lt O (1)); [Intro | Apply lt_O_Sn]; Assert H8 := (lt_le_trans ? ? ? H7 H6); Rewrite H5 in H8; Elim (lt_n_n ? H8). -Pattern 1 eps; Rewrite <- Rinv_Rinv. -Apply Rinv_lt. -Apply Rmult_lt_pos; [Apply Rlt_Rinv; Assumption | Assumption]. -Rewrite H3 in H0; Assumption. -Red; Intro; Rewrite H5 in H; Elim (Rlt_antirefl ? H). -Apply Rlt_trans with ``/eps``. -Apply Rlt_Rinv; Assumption. -Rewrite H3 in H0; Assumption. -Apply lt_le_trans with (1); [Apply lt_O_Sn | Apply le_max_r]. -Apply le_IZR; Replace (IZR `0`) with R0; [Idtac | Reflexivity]; Left; Apply Rlt_trans with ``/eps``; [Apply Rlt_Rinv; Assumption | Assumption]. -Assert H0 := (archimed ``/eps``). -Elim H0; Intros; Assumption. -Qed. - -Lemma Alembert_cos : (Un_cv [n:nat]``(Rabsolu (cos_n (S n))/(cos_n n))`` R0). -Unfold Un_cv; Intros. -Assert H0 := (archimed_cor1 eps H). -Elim H0; Intros; Exists x. -Intros; Rewrite simpl_cos_n; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_Ropp; Rewrite Rabsolu_right. -Rewrite mult_INR; Rewrite Rinv_Rmult. -Cut ``/(INR (mult (S (S O)) (S n)))<1``. -Intro; Cut ``/(INR (plus (mult (S (S O)) n) (S O)))<eps``. -Intro; Rewrite <- (Rmult_1l eps). -Apply Rmult_lt; Try Assumption. -Change ``0</(INR (plus (mult (S (S O)) n) (S O)))``; Apply Rlt_Rinv; Apply lt_INR_0. -Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Apply lt_O_Sn | Ring]. -Apply Rlt_R0_R1. -Cut (lt x (plus (mult (2) n) (1))). -Intro; Assert H5 := (lt_INR ? ? H4). -Apply Rlt_trans with ``/(INR x)``. -Apply Rinv_lt. -Apply Rmult_lt_pos. -Apply lt_INR_0. -Elim H1; Intros; Assumption. -Apply lt_INR_0; Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Apply lt_O_Sn | Ring]. -Assumption. -Elim H1; Intros; Assumption. -Apply lt_le_trans with (S n). -Unfold ge in H2; Apply le_lt_n_Sm; Assumption. -Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Idtac | Ring]. -Apply le_n_S; Apply le_n_2n. -Apply Rlt_monotony_contra with (INR (mult (S (S O)) (S n))). -Apply lt_INR_0; Replace (mult (2) (S n)) with (S (S (mult (2) n))). -Apply lt_O_Sn. -Replace (S n) with (plus n (1)); [Idtac | Ring]. -Ring. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Replace R1 with (INR (1)); [Apply lt_INR | Reflexivity]. -Replace (mult (2) (S n)) with (S (S (mult (2) n))). -Apply lt_n_S; Apply lt_O_Sn. -Replace (S n) with (plus n (1)); [Ring | Ring]. -Apply not_O_INR; Discriminate. -Apply not_O_INR; Discriminate. -Replace (plus (mult (S (S O)) n) (S O)) with (S (mult (2) n)); [Apply not_O_INR; Discriminate | Ring]. -Apply Rle_sym1; Left; Apply Rlt_Rinv. -Apply lt_INR_0. -Replace (mult (mult (2) (S n)) (plus (mult (2) n) (1))) with (S (S (plus (mult (4) (mult n n)) (mult (6) n)))). -Apply lt_O_Sn. -Apply INR_eq. -Repeat Rewrite S_INR; Rewrite plus_INR; Repeat Rewrite mult_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Replace (INR O) with R0; [Ring | Reflexivity]. -Qed. - -Lemma cosn_no_R0 : (n:nat)``(cos_n n)<>0``. -Intro; Unfold cos_n; Unfold Rdiv; Apply prod_neq_R0. -Apply pow_nonzero; DiscrR. -Apply Rinv_neq_R0. -Apply INR_fact_neq_0. -Qed. - -(**********) -Definition cos_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``(cos_n i)*(pow x i)`` l). - -(**********) -Lemma exist_cos : (x:R)(SigT R [l:R](cos_in x l)). -Intro; Generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos). -Unfold Pser cos_in; Trivial. -Qed. - -(* Definition of cosinus *) -(*************************) -Definition cos : R -> R := [x:R](Cases (exist_cos (Rsqr x)) of (Specif.existT a b) => a end). - - -Definition sin_n [n:nat] : R := ``(pow (-1) n)/(INR (fact (plus (mult (S (S O)) n) (S O))))``. - -Lemma simpl_sin_n : (n:nat) (Rdiv (sin_n (S n)) (sin_n n))==(Ropp (Rinv (INR (mult (plus (mult (2) (S n)) (1)) (mult (2) (S n)))))). -Intro; Unfold sin_n; Replace (S n) with (plus n (1)); [Idtac | Ring]. -Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult. -Rewrite Rinv_Rinv. -Replace ``(pow ( -1) n)*(pow ( -1) (S O))*/(INR (fact (plus (mult (S (S O)) (plus n (S O))) (S O))))*(/(pow ( -1) n)*(INR (fact (plus (mult (S (S O)) n) (S O)))))`` with ``((pow ( -1) n)*/(pow ( -1) n))*/(INR (fact (plus (mult (S (S O)) (plus n (S O))) (S O))))*(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow (-1) (S O))``; [Idtac | Ring]. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Unfold pow; Rewrite Rmult_1r; Replace (plus (mult (S (S O)) (plus n (S O))) (S O)) with (S (S (plus (mult (S (S O)) n) (S O)))). -Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rinv_Rmult. -Rewrite <- (Rmult_sym ``-1``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Replace (S (plus (mult (S (S O)) n) (S O))) with (mult (S (S O)) (plus n (S O))). -Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult. -Ring. -Apply not_O_INR; Discriminate. -Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. -Apply not_O_INR; Discriminate. -Apply prod_neq_R0. -Apply not_O_INR; Discriminate. -Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. -Apply not_O_INR; Discriminate. -Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. -Rewrite mult_plus_distr_r; Cut (n:nat) (S n)=(plus n (1)). -Intros; Rewrite (H (plus (mult (2) n) (1))). -Ring. -Intros; Ring. -Apply INR_fact_neq_0. -Apply not_O_INR; Discriminate. -Apply INR_fact_neq_0. -Apply not_O_INR; Discriminate. -Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. -Cut (n:nat) (S (S n))=(plus n (2)); [Intros; Rewrite (H (plus (mult (2) n) (1))); Ring | Intros; Ring]. -Apply pow_nonzero; DiscrR. -Apply INR_fact_neq_0. -Apply pow_nonzero; DiscrR. -Apply Rinv_neq_R0; Apply INR_fact_neq_0. -Qed. - -Lemma Alembert_sin : (Un_cv [n:nat]``(Rabsolu (sin_n (S n))/(sin_n n))`` R0). -Unfold Un_cv; Intros; Assert H0 := (archimed_cor1 eps H). -Elim H0; Intros; Exists x. -Intros; Rewrite simpl_sin_n; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_Ropp; Rewrite Rabsolu_right. -Rewrite mult_INR; Rewrite Rinv_Rmult. -Cut ``/(INR (mult (S (S O)) (S n)))<1``. -Intro; Cut ``/(INR (plus (mult (S (S O)) (S n)) (S O)))<eps``. -Intro; Rewrite <- (Rmult_1l eps); Rewrite (Rmult_sym ``/(INR (plus (mult (S (S O)) (S n)) (S O)))``); Apply Rmult_lt; Try Assumption. -Change ``0</(INR (plus (mult (S (S O)) (S n)) (S O)))``; Apply Rlt_Rinv; Apply lt_INR_0; Replace (plus (mult (2) (S n)) (1)) with (S (mult (2) (S n))); [Apply lt_O_Sn | Ring]. -Apply Rlt_R0_R1. -Cut (lt x (plus (mult (2) (S n)) (1))). -Intro; Assert H5 := (lt_INR ? ? H4); Apply Rlt_trans with ``/(INR x)``. -Apply Rinv_lt. -Apply Rmult_lt_pos. -Apply lt_INR_0; Elim H1; Intros; Assumption. -Apply lt_INR_0; Replace (plus (mult (2) (S n)) (1)) with (S (mult (2) (S n))); [Apply lt_O_Sn | Ring]. -Assumption. -Elim H1; Intros; Assumption. -Apply lt_le_trans with (S n). -Unfold ge in H2; Apply le_lt_n_Sm; Assumption. -Replace (plus (mult (2) (S n)) (1)) with (S (mult (2) (S n))); [Idtac | Ring]. -Apply le_S; Apply le_n_2n. -Apply Rlt_monotony_contra with (INR (mult (S (S O)) (S n))). -Apply lt_INR_0; Replace (mult (2) (S n)) with (S (S (mult (2) n))); [Apply lt_O_Sn | Replace (S n) with (plus n (1)); [Idtac | Ring]; Ring]. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Replace R1 with (INR (1)); [Apply lt_INR | Reflexivity]. -Replace (mult (2) (S n)) with (S (S (mult (2) n))). -Apply lt_n_S; Apply lt_O_Sn. -Replace (S n) with (plus n (1)); [Ring | Ring]. -Apply not_O_INR; Discriminate. -Apply not_O_INR; Discriminate. -Apply not_O_INR; Discriminate. -Left; Change ``0</(INR (mult (plus (mult (S (S O)) (S n)) (S O)) (mult (S (S O)) (S n))))``; Apply Rlt_Rinv. -Apply lt_INR_0. -Replace (mult (plus (mult (2) (S n)) (1)) (mult (2) (S n))) with (S (S (S (S (S (S (plus (mult (4) (mult n n)) (mult (10) n)))))))). -Apply lt_O_Sn. -Apply INR_eq; Repeat Rewrite S_INR; Rewrite plus_INR; Repeat Rewrite mult_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Replace (INR O) with R0; [Ring | Reflexivity]. -Qed. - -Lemma sin_no_R0 : (n:nat)``(sin_n n)<>0``. -Intro; Unfold sin_n; Unfold Rdiv; Apply prod_neq_R0. -Apply pow_nonzero; DiscrR. -Apply Rinv_neq_R0; Apply INR_fact_neq_0. -Qed. - -(**********) -Definition sin_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``(sin_n i)*(pow x i)`` l). - -(**********) -Lemma exist_sin : (x:R)(SigT R [l:R](sin_in x l)). -Intro; Generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin). -Unfold Pser sin_n; Trivial. -Qed. - -(***********************) -(* Definition of sinus *) -Definition sin : R -> R := [x:R](Cases (exist_sin (Rsqr x)) of (Specif.existT a b) => ``x*a`` end). - -(*********************************************) -(* PROPERTIES *) -(*********************************************) - -Lemma cos_sym : (x:R) ``(cos x)==(cos (-x))``. -Intros; Unfold cos; Replace ``(Rsqr (-x))`` with (Rsqr x). -Reflexivity. -Apply Rsqr_neg. -Qed. - -Lemma sin_antisym : (x:R)``(sin (-x))==-(sin x)``. -Intro; Unfold sin; Replace ``(Rsqr (-x))`` with (Rsqr x); [Idtac | Apply Rsqr_neg]. -Case (exist_sin (Rsqr x)); Intros; Ring. -Qed. - -Lemma sin_0 : ``(sin 0)==0``. -Unfold sin; Case (exist_sin (Rsqr R0)). -Intros; Ring. -Qed. - -Lemma exist_cos0 : (SigT R [l:R](cos_in R0 l)). -Apply Specif.existT with R1. -Unfold cos_in; Unfold infinit_sum; Intros; Exists O. -Intros. -Unfold R_dist. -Induction n. -Unfold cos_n; Simpl. -Unfold Rdiv; Rewrite Rinv_R1. -Do 2 Rewrite Rmult_1r. -Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Rewrite tech5. -Replace ``(cos_n (S n))*(pow 0 (S n))`` with R0. -Rewrite Rplus_Or. -Apply Hrecn; Unfold ge; Apply le_O_n. -Simpl; Ring. -Defined. - -(* Calculus of (cos 0) *) -Lemma cos_0 : ``(cos 0)==1``. -Cut (cos_in R0 (cos R0)). -Cut (cos_in R0 R1). -Unfold cos_in; Intros; EApply unicity_sum. -Apply H0. -Apply H. -Exact (projT2 ? ? exist_cos0). -Assert H := (projT2 ? ? (exist_cos (Rsqr R0))); Unfold cos; Pattern 1 R0; Replace R0 with (Rsqr R0); [Exact H | Apply Rsqr_O]. -Qed. |