diff options
Diffstat (limited to 'theories7/Reals/Rtrigo_calc.v')
-rw-r--r-- | theories7/Reals/Rtrigo_calc.v | 350 |
1 files changed, 350 insertions, 0 deletions
diff --git a/theories7/Reals/Rtrigo_calc.v b/theories7/Reals/Rtrigo_calc.v new file mode 100644 index 00000000..ab181106 --- /dev/null +++ b/theories7/Reals/Rtrigo_calc.v @@ -0,0 +1,350 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Rtrigo_calc.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*) + +Require Rbase. +Require Rfunctions. +Require SeqSeries. +Require Rtrigo. +Require R_sqrt. +V7only [ Import nat_scope. Import Z_scope. Import R_scope. ]. +Open Local Scope R_scope. + +Lemma tan_PI : ``(tan PI)==0``. +Unfold tan; Rewrite sin_PI; Rewrite cos_PI; Unfold Rdiv; Apply Rmult_Ol. +Qed. + +Lemma sin_3PI2 : ``(sin (3*(PI/2)))==(-1)``. +Replace ``3*(PI/2)`` with ``PI+(PI/2)``. +Rewrite sin_plus; Rewrite sin_PI; Rewrite cos_PI; Rewrite sin_PI2; Ring. +Pattern 1 PI; Rewrite (double_var PI); Ring. +Qed. + +Lemma tan_2PI : ``(tan (2*PI))==0``. +Unfold tan; Rewrite sin_2PI; Unfold Rdiv; Apply Rmult_Ol. +Qed. + +Lemma sin_cos_PI4 : ``(sin (PI/4)) == (cos (PI/4))``. +Proof with Trivial. +Rewrite cos_sin. +Replace ``PI/2+PI/4`` with ``-(PI/4)+PI``. +Rewrite neg_sin; Rewrite sin_neg; Ring. +Cut ``PI==PI/2+PI/2``; [Intro | Apply double_var]. +Pattern 2 3 PI; Rewrite H; Pattern 2 3 PI; Rewrite H. +Assert H0 : ``2<>0``; [DiscrR | Unfold Rdiv; Rewrite Rinv_Rmult; Try Ring]. +Qed. + +Lemma sin_PI3_cos_PI6 : ``(sin (PI/3))==(cos (PI/6))``. +Proof with Trivial. +Replace ``PI/6`` with ``(PI/2)-(PI/3)``. +Rewrite cos_shift. +Assert H0 : ``6<>0``; [DiscrR | Idtac]. +Assert H1 : ``3<>0``; [DiscrR | Idtac]. +Assert H2 : ``2<>0``; [DiscrR | Idtac]. +Apply r_Rmult_mult with ``6``. +Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``6``). +Unfold Rdiv; Repeat Rewrite Rmult_assoc. +Rewrite <- Rinv_l_sym. +Rewrite (Rmult_sym ``/3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. +Pattern 2 PI; Rewrite (Rmult_sym PI); Repeat Rewrite Rmult_1r; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. +Ring. +Qed. + +Lemma sin_PI6_cos_PI3 : ``(cos (PI/3))==(sin (PI/6))``. +Proof with Trivial. +Replace ``PI/6`` with ``(PI/2)-(PI/3)``. +Rewrite sin_shift. +Assert H0 : ``6<>0``; [DiscrR | Idtac]. +Assert H1 : ``3<>0``; [DiscrR | Idtac]. +Assert H2 : ``2<>0``; [DiscrR | Idtac]. +Apply r_Rmult_mult with ``6``. +Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``6``). +Unfold Rdiv; Repeat Rewrite Rmult_assoc. +Rewrite <- Rinv_l_sym. +Rewrite (Rmult_sym ``/3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. +Pattern 2 PI; Rewrite (Rmult_sym PI); Repeat Rewrite Rmult_1r; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. +Ring. +Qed. + +Lemma PI6_RGT_0 : ``0<PI/6``. +Unfold Rdiv; Apply Rmult_lt_pos; [Apply PI_RGT_0 | Apply Rlt_Rinv; Sup0]. +Qed. + +Lemma PI6_RLT_PI2 : ``PI/6<PI/2``. +Unfold Rdiv; Apply Rlt_monotony. +Apply PI_RGT_0. +Apply Rinv_lt; Sup. +Qed. + +Lemma sin_PI6 : ``(sin (PI/6))==1/2``. +Proof with Trivial. +Assert H : ``2<>0``; [DiscrR | Idtac]. +Apply r_Rmult_mult with ``2*(cos (PI/6))``. +Replace ``2*(cos (PI/6))*(sin (PI/6))`` with ``2*(sin (PI/6))*(cos (PI/6))``. +Rewrite <- sin_2a; Replace ``2*(PI/6)`` with ``PI/3``. +Rewrite sin_PI3_cos_PI6. +Unfold Rdiv; Rewrite Rmult_1l; Rewrite Rmult_assoc; Pattern 2 ``2``; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1r. +Unfold Rdiv; Rewrite Rinv_Rmult. +Rewrite (Rmult_sym ``/2``); Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1r. +DiscrR. +Ring. +Apply prod_neq_R0. +Cut ``0<(cos (PI/6))``; [Intro H1; Auto with real | Apply cos_gt_0; [Apply (Rlt_trans ``-(PI/2)`` ``0`` ``PI/6`` _PI2_RLT_0 PI6_RGT_0) | Apply PI6_RLT_PI2]]. +Qed. + +Lemma sqrt2_neq_0 : ~``(sqrt 2)==0``. +Assert Hyp:``0<2``; [Sup0 | Generalize (Rlt_le ``0`` ``2`` Hyp); Intro H1; Red; Intro H2; Generalize (sqrt_eq_0 ``2`` H1 H2); Intro H; Absurd ``2==0``; [ DiscrR | Assumption]]. +Qed. + +Lemma R1_sqrt2_neq_0 : ~``1/(sqrt 2)==0``. +Generalize (Rinv_neq_R0 ``(sqrt 2)`` sqrt2_neq_0); Intro H; Generalize (prod_neq_R0 ``1`` ``(Rinv (sqrt 2))`` R1_neq_R0 H); Intro H0; Assumption. +Qed. + +Lemma sqrt3_2_neq_0 : ~``2*(sqrt 3)==0``. +Apply prod_neq_R0; [DiscrR | Assert Hyp:``0<3``; [Sup0 | Generalize (Rlt_le ``0`` ``3`` Hyp); Intro H1; Red; Intro H2; Generalize (sqrt_eq_0 ``3`` H1 H2); Intro H; Absurd ``3==0``; [ DiscrR | Assumption]]]. +Qed. + +Lemma Rlt_sqrt2_0 : ``0<(sqrt 2)``. +Assert Hyp:``0<2``; [Sup0 | Generalize (sqrt_positivity ``2`` (Rlt_le ``0`` ``2`` Hyp)); Intro H1; Elim H1; Intro H2; [Assumption | Absurd ``0 == (sqrt 2)``; [Apply not_sym; Apply sqrt2_neq_0 | Assumption]]]. +Qed. + +Lemma Rlt_sqrt3_0 : ``0<(sqrt 3)``. +Cut ~(O=(1)); [Intro H0; Assert Hyp:``0<2``; [Sup0 | Generalize (Rlt_le ``0`` ``2`` Hyp); Intro H1; Assert Hyp2:``0<3``; [Sup0 | Generalize (Rlt_le ``0`` ``3`` Hyp2); Intro H2; Generalize (lt_INR_0 (1) (neq_O_lt (1) H0)); Unfold INR; Intro H3; Generalize (Rlt_compatibility ``2`` ``0`` ``1`` H3); Rewrite Rplus_sym; Rewrite Rplus_Ol; Replace ``2+1`` with ``3``; [Intro H4; Generalize (sqrt_lt_1 ``2`` ``3`` H1 H2 H4); Clear H3; Intro H3; Apply (Rlt_trans ``0`` ``(sqrt 2)`` ``(sqrt 3)`` Rlt_sqrt2_0 H3) | Ring]]] | Discriminate]. +Qed. + +Lemma PI4_RGT_0 : ``0<PI/4``. +Unfold Rdiv; Apply Rmult_lt_pos; [Apply PI_RGT_0 | Apply Rlt_Rinv; Sup0]. +Qed. + +Lemma cos_PI4 : ``(cos (PI/4))==1/(sqrt 2)``. +Proof with Trivial. +Apply Rsqr_inj. +Apply cos_ge_0. +Left; Apply (Rlt_trans ``-(PI/2)`` R0 ``PI/4`` _PI2_RLT_0 PI4_RGT_0). +Left; Apply PI4_RLT_PI2. +Left; Apply (Rmult_lt_pos R1 ``(Rinv (sqrt 2))``). +Sup. +Apply Rlt_Rinv; Apply Rlt_sqrt2_0. +Rewrite Rsqr_div. +Rewrite Rsqr_1; Rewrite Rsqr_sqrt. +Assert H : ``2<>0``; [DiscrR | Idtac]. +Unfold Rsqr; Pattern 1 ``(cos (PI/4))``; Rewrite <- sin_cos_PI4; Replace ``(sin (PI/4))*(cos (PI/4))`` with ``(1/2)*(2*(sin (PI/4))*(cos (PI/4)))``. +Rewrite <- sin_2a; Replace ``2*(PI/4)`` with ``PI/2``. +Rewrite sin_PI2. +Apply Rmult_1r. +Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rinv_Rmult. +Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1r. +Unfold Rdiv; Rewrite Rmult_1l; Repeat Rewrite <- Rmult_assoc. +Rewrite <- Rinv_l_sym. +Rewrite Rmult_1l. +Left; Sup. +Apply sqrt2_neq_0. +Qed. + +Lemma sin_PI4 : ``(sin (PI/4))==1/(sqrt 2)``. +Rewrite sin_cos_PI4; Apply cos_PI4. +Qed. + +Lemma tan_PI4 : ``(tan (PI/4))==1``. +Unfold tan; Rewrite sin_cos_PI4. +Unfold Rdiv; Apply Rinv_r. +Change ``(cos (PI/4))<>0``; Rewrite cos_PI4; Apply R1_sqrt2_neq_0. +Qed. + +Lemma cos3PI4 : ``(cos (3*(PI/4)))==-1/(sqrt 2)``. +Proof with Trivial. +Replace ``3*(PI/4)`` with ``(PI/2)-(-(PI/4))``. +Rewrite cos_shift; Rewrite sin_neg; Rewrite sin_PI4. +Unfold Rdiv; Rewrite Ropp_mul1. +Unfold Rminus; Rewrite Ropp_Ropp; Pattern 1 PI; Rewrite double_var; Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_Rmult; [Ring | DiscrR | DiscrR]. +Qed. + +Lemma sin3PI4 : ``(sin (3*(PI/4)))==1/(sqrt 2)``. +Proof with Trivial. +Replace ``3*(PI/4)`` with ``(PI/2)-(-(PI/4))``. +Rewrite sin_shift; Rewrite cos_neg; Rewrite cos_PI4. +Unfold Rminus; Rewrite Ropp_Ropp; Pattern 1 PI; Rewrite double_var; Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_Rmult; [Ring | DiscrR | DiscrR]. +Qed. + +Lemma cos_PI6 : ``(cos (PI/6))==(sqrt 3)/2``. +Proof with Trivial. +Apply Rsqr_inj. +Apply cos_ge_0. +Left; Apply (Rlt_trans ``-(PI/2)`` R0 ``PI/6`` _PI2_RLT_0 PI6_RGT_0). +Left; Apply PI6_RLT_PI2. +Left; Apply (Rmult_lt_pos ``(sqrt 3)`` ``(Rinv 2)``). +Apply Rlt_sqrt3_0. +Apply Rlt_Rinv; Sup0. +Assert H : ``2<>0``; [DiscrR | Idtac]. +Assert H1 : ``4<>0``; [Apply prod_neq_R0 | Idtac]. +Rewrite Rsqr_div. +Rewrite cos2; Unfold Rsqr; Rewrite sin_PI6; Rewrite sqrt_def. +Unfold Rdiv; Rewrite Rmult_1l; Apply r_Rmult_mult with ``4``. +Rewrite Rminus_distr; Rewrite (Rmult_sym ``3``); Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. +Rewrite Rmult_1l; Rewrite Rmult_1r. +Rewrite <- (Rmult_sym ``/2``); Repeat Rewrite <- Rmult_assoc. +Rewrite <- Rinv_l_sym. +Rewrite Rmult_1l; Rewrite <- Rinv_r_sym. +Ring. +Left; Sup0. +Qed. + +Lemma tan_PI6 : ``(tan (PI/6))==1/(sqrt 3)``. +Unfold tan; Rewrite sin_PI6; Rewrite cos_PI6; Unfold Rdiv; Repeat Rewrite Rmult_1l; Rewrite Rinv_Rmult. +Rewrite Rinv_Rinv. +Rewrite (Rmult_sym ``/2``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. +Apply Rmult_1r. +DiscrR. +DiscrR. +Red; Intro; Assert H1 := Rlt_sqrt3_0; Rewrite H in H1; Elim (Rlt_antirefl ``0`` H1). +Apply Rinv_neq_R0; DiscrR. +Qed. + +Lemma sin_PI3 : ``(sin (PI/3))==(sqrt 3)/2``. +Rewrite sin_PI3_cos_PI6; Apply cos_PI6. +Qed. + +Lemma cos_PI3 : ``(cos (PI/3))==1/2``. +Rewrite sin_PI6_cos_PI3; Apply sin_PI6. +Qed. + +Lemma tan_PI3 : ``(tan (PI/3))==(sqrt 3)``. +Unfold tan; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Rewrite Rmult_1l; Rewrite Rinv_Rinv. +Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Apply Rmult_1r. +DiscrR. +DiscrR. +Qed. + +Lemma sin_2PI3 : ``(sin (2*(PI/3)))==(sqrt 3)/2``. +Rewrite double; Rewrite sin_plus; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Repeat Rewrite Rmult_1l; Rewrite (Rmult_sym ``/2``); Repeat Rewrite <- Rmult_assoc; Rewrite double_var; Reflexivity. +Qed. + +Lemma cos_2PI3 : ``(cos (2*(PI/3)))==-1/2``. +Proof with Trivial. +Assert H : ``2<>0``; [DiscrR | Idtac]. +Assert H0 : ``4<>0``; [Apply prod_neq_R0 | Idtac]. +Rewrite double; Rewrite cos_plus; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Rewrite Rmult_1l; Apply r_Rmult_mult with ``4``. +Rewrite Rminus_distr; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``). +Repeat Rewrite Rmult_assoc; Rewrite <- (Rinv_l_sym). +Rewrite Rmult_1r; Rewrite <- Rinv_r_sym. +Pattern 4 ``2``; Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1r; Rewrite Ropp_mul3; Rewrite Rmult_1r. +Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1r; Rewrite (Rmult_sym ``2``); Rewrite (Rmult_sym ``/2``). +Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1r; Rewrite sqrt_def. +Ring. +Left; Sup. +Qed. + +Lemma tan_2PI3 : ``(tan (2*(PI/3)))==-(sqrt 3)``. +Proof with Trivial. +Assert H : ``2<>0``; [DiscrR | Idtac]. +Unfold tan; Rewrite sin_2PI3; Rewrite cos_2PI3; Unfold Rdiv; Rewrite Ropp_mul1; Rewrite Rmult_1l; Rewrite <- Ropp_Rinv. +Rewrite Rinv_Rinv. +Rewrite Rmult_assoc; Rewrite Ropp_mul3; Rewrite <- Rinv_l_sym. +Ring. +Apply Rinv_neq_R0. +Qed. + +Lemma cos_5PI4 : ``(cos (5*(PI/4)))==-1/(sqrt 2)``. +Proof with Trivial. +Replace ``5*(PI/4)`` with ``(PI/4)+(PI)``. +Rewrite neg_cos; Rewrite cos_PI4; Unfold Rdiv; Rewrite Ropp_mul1. +Pattern 2 PI; Rewrite double_var; Pattern 2 3 PI; Rewrite double_var; Assert H : ``2<>0``; [DiscrR | Unfold Rdiv; Repeat Rewrite Rinv_Rmult; Try Ring]. +Qed. + +Lemma sin_5PI4 : ``(sin (5*(PI/4)))==-1/(sqrt 2)``. +Proof with Trivial. +Replace ``5*(PI/4)`` with ``(PI/4)+(PI)``. +Rewrite neg_sin; Rewrite sin_PI4; Unfold Rdiv; Rewrite Ropp_mul1. +Pattern 2 PI; Rewrite double_var; Pattern 2 3 PI; Rewrite double_var; Assert H : ``2<>0``; [DiscrR | Unfold Rdiv; Repeat Rewrite Rinv_Rmult; Try Ring]. +Qed. + +Lemma sin_cos5PI4 : ``(cos (5*(PI/4)))==(sin (5*(PI/4)))``. +Rewrite cos_5PI4; Rewrite sin_5PI4; Reflexivity. +Qed. + +Lemma Rgt_3PI2_0 : ``0<3*(PI/2)``. +Apply Rmult_lt_pos; [Sup0 | Unfold Rdiv; Apply Rmult_lt_pos; [Apply PI_RGT_0 | Apply Rlt_Rinv; Sup0]]. +Qed. + +Lemma Rgt_2PI_0 : ``0<2*PI``. +Apply Rmult_lt_pos; [Sup0 | Apply PI_RGT_0]. +Qed. + +Lemma Rlt_PI_3PI2 : ``PI<3*(PI/2)``. +Generalize PI2_RGT_0; Intro H1; Generalize (Rlt_compatibility PI ``0`` ``PI/2`` H1); Replace ``PI+(PI/2)`` with ``3*(PI/2)``. +Rewrite Rplus_Or; Intro H2; Assumption. +Pattern 2 PI; Rewrite double_var; Ring. +Qed. + +Lemma Rlt_3PI2_2PI : ``3*(PI/2)<2*PI``. +Generalize PI2_RGT_0; Intro H1; Generalize (Rlt_compatibility ``3*(PI/2)`` ``0`` ``PI/2`` H1); Replace ``3*(PI/2)+(PI/2)`` with ``2*PI``. +Rewrite Rplus_Or; Intro H2; Assumption. +Rewrite double; Pattern 1 2 PI; Rewrite double_var; Ring. +Qed. + +(***************************************************************) +(* Radian -> Degree | Degree -> Radian *) +(***************************************************************) + +Definition plat : R := ``180``. +Definition toRad [x:R] : R := ``x*PI*/plat``. +Definition toDeg [x:R] : R := ``x*plat*/PI``. + +Lemma rad_deg : (x:R) (toRad (toDeg x))==x. +Intro; Unfold toRad toDeg; Replace ``x*plat*/PI*PI*/plat`` with ``x*(plat*/plat)*(PI*/PI)``; [Idtac | Ring]. +Repeat Rewrite <- Rinv_r_sym. +Ring. +Apply PI_neq0. +Unfold plat; DiscrR. +Qed. + +Lemma toRad_inj : (x,y:R) (toRad x)==(toRad y) -> x==y. +Intros; Unfold toRad in H; Apply r_Rmult_mult with PI. +Rewrite <- (Rmult_sym x); Rewrite <- (Rmult_sym y). +Apply r_Rmult_mult with ``/plat``. +Rewrite <- (Rmult_sym ``x*PI``); Rewrite <- (Rmult_sym ``y*PI``); Assumption. +Apply Rinv_neq_R0; Unfold plat; DiscrR. +Apply PI_neq0. +Qed. + +Lemma deg_rad : (x:R) (toDeg (toRad x))==x. +Intro x; Apply toRad_inj; Rewrite -> (rad_deg (toRad x)); Reflexivity. +Qed. + +Definition sind [x:R] : R := (sin (toRad x)). +Definition cosd [x:R] : R := (cos (toRad x)). +Definition tand [x:R] : R := (tan (toRad x)). + +Lemma Rsqr_sin_cos_d_one : (x:R) ``(Rsqr (sind x))+(Rsqr (cosd x))==1``. +Intro x; Unfold sind; Unfold cosd; Apply sin2_cos2. +Qed. + +(***************************************************) +(* Other properties *) +(***************************************************) + +Lemma sin_lb_ge_0 : (a:R) ``0<=a``->``a<=PI/2``->``0<=(sin_lb a)``. +Intros; Case (total_order R0 a); Intro. +Left; Apply sin_lb_gt_0; Assumption. +Elim H1; Intro. +Rewrite <- H2; Unfold sin_lb; Unfold sin_approx; Unfold sum_f_R0; Unfold sin_term; Repeat Rewrite pow_ne_zero. +Unfold Rdiv; Repeat Rewrite Rmult_Ol; Repeat Rewrite Rmult_Or; Repeat Rewrite Rplus_Or; Right; Reflexivity. +Discriminate. +Discriminate. +Discriminate. +Discriminate. +Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` a ``0`` H H2)). +Qed. |