diff options
Diffstat (limited to 'theories7/Reals/Rsigma.v')
-rw-r--r-- | theories7/Reals/Rsigma.v | 117 |
1 files changed, 117 insertions, 0 deletions
diff --git a/theories7/Reals/Rsigma.v b/theories7/Reals/Rsigma.v new file mode 100644 index 00000000..f9e8e92b --- /dev/null +++ b/theories7/Reals/Rsigma.v @@ -0,0 +1,117 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Rsigma.v,v 1.1.2.1 2004/07/16 19:31:35 herbelin Exp $ i*) + +Require Rbase. +Require Rfunctions. +Require Rseries. +Require PartSum. +V7only [ Import nat_scope. Import Z_scope. Import R_scope. ]. +Open Local Scope R_scope. + +Set Implicit Arguments. + +Section Sigma. + +Variable f : nat->R. + +Definition sigma [low,high:nat] : R := (sum_f_R0 [k:nat](f (plus low k)) (minus high low)). + +Theorem sigma_split : (low,high,k:nat) (le low k)->(lt k high)->``(sigma low high)==(sigma low k)+(sigma (S k) high)``. +Intros; Induction k. +Cut low = O. +Intro; Rewrite H1; Unfold sigma; Rewrite <- minus_n_n; Rewrite <- minus_n_O; Simpl; Replace (minus high (S O)) with (pred high). +Apply (decomp_sum [k:nat](f k)). +Assumption. +Apply pred_of_minus. +Inversion H; Reflexivity. +Cut (le low k)\/low=(S k). +Intro; Elim H1; Intro. +Replace (sigma low (S k)) with ``(sigma low k)+(f (S k))``. +Rewrite Rplus_assoc; Replace ``(f (S k))+(sigma (S (S k)) high)`` with (sigma (S k) high). +Apply Hreck. +Assumption. +Apply lt_trans with (S k); [Apply lt_n_Sn | Assumption]. +Unfold sigma; Replace (minus high (S (S k))) with (pred (minus high (S k))). +Pattern 3 (S k); Replace (S k) with (plus (S k) O); [Idtac | Ring]. +Replace (sum_f_R0 [k0:nat](f (plus (S (S k)) k0)) (pred (minus high (S k)))) with (sum_f_R0 [k0:nat](f (plus (S k) (S k0))) (pred (minus high (S k)))). +Apply (decomp_sum [i:nat](f (plus (S k) i))). +Apply lt_minus_O_lt; Assumption. +Apply sum_eq; Intros; Replace (plus (S k) (S i)) with (plus (S (S k)) i). +Reflexivity. +Apply INR_eq; Do 2 Rewrite plus_INR; Do 3 Rewrite S_INR; Ring. +Replace (minus high (S (S k))) with (minus (minus high (S k)) (S O)). +Apply pred_of_minus. +Apply INR_eq; Repeat Rewrite minus_INR. +Do 4 Rewrite S_INR; Ring. +Apply lt_le_S; Assumption. +Apply lt_le_weak; Assumption. +Apply lt_le_S; Apply lt_minus_O_lt; Assumption. +Unfold sigma; Replace (minus (S k) low) with (S (minus k low)). +Pattern 1 (S k); Replace (S k) with (plus low (S (minus k low))). +Symmetry; Apply (tech5 [i:nat](f (plus low i))). +Apply INR_eq; Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite minus_INR. +Ring. +Assumption. +Apply minus_Sn_m; Assumption. +Rewrite <- H2; Unfold sigma; Rewrite <- minus_n_n; Simpl; Replace (minus high (S low)) with (pred (minus high low)). +Replace (sum_f_R0 [k0:nat](f (S (plus low k0))) (pred (minus high low))) with (sum_f_R0 [k0:nat](f (plus low (S k0))) (pred (minus high low))). +Apply (decomp_sum [k0:nat](f (plus low k0))). +Apply lt_minus_O_lt. +Apply le_lt_trans with (S k); [Rewrite H2; Apply le_n | Assumption]. +Apply sum_eq; Intros; Replace (S (plus low i)) with (plus low (S i)). +Reflexivity. +Apply INR_eq; Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite plus_INR; Ring. +Replace (minus high (S low)) with (minus (minus high low) (S O)). +Apply pred_of_minus. +Apply INR_eq; Repeat Rewrite minus_INR. +Do 2 Rewrite S_INR; Ring. +Apply lt_le_S; Rewrite H2; Assumption. +Rewrite H2; Apply lt_le_weak; Assumption. +Apply lt_le_S; Apply lt_minus_O_lt; Rewrite H2; Assumption. +Inversion H; [ + Right; Reflexivity +| Left; Assumption]. +Qed. + +Theorem sigma_diff : (low,high,k:nat) (le low k) -> (lt k high )->``(sigma low high)-(sigma low k)==(sigma (S k) high)``. +Intros low high k H1 H2; Symmetry; Rewrite -> (sigma_split H1 H2); Ring. +Qed. + +Theorem sigma_diff_neg : (low,high,k:nat) (le low k) -> (lt k high)-> ``(sigma low k)-(sigma low high)==-(sigma (S k) high)``. +Intros low high k H1 H2; Rewrite -> (sigma_split H1 H2); Ring. +Qed. + +Theorem sigma_first : (low,high:nat) (lt low high) -> ``(sigma low high)==(f low)+(sigma (S low) high)``. +Intros low high H1; Generalize (lt_le_S low high H1); Intro H2; Generalize (lt_le_weak low high H1); Intro H3; Replace ``(f low)`` with ``(sigma low low)``. +Apply sigma_split. +Apply le_n. +Assumption. +Unfold sigma; Rewrite <- minus_n_n. +Simpl. +Replace (plus low O) with low; [Reflexivity | Ring]. +Qed. + +Theorem sigma_last : (low,high:nat) (lt low high) -> ``(sigma low high)==(f high)+(sigma low (pred high))``. +Intros low high H1; Generalize (lt_le_S low high H1); Intro H2; Generalize (lt_le_weak low high H1); Intro H3; Replace ``(f high)`` with ``(sigma high high)``. +Rewrite Rplus_sym; Cut high = (S (pred high)). +Intro; Pattern 3 high; Rewrite H. +Apply sigma_split. +Apply le_S_n; Rewrite <- H; Apply lt_le_S; Assumption. +Apply lt_pred_n_n; Apply le_lt_trans with low; [Apply le_O_n | Assumption]. +Apply S_pred with O; Apply le_lt_trans with low; [Apply le_O_n | Assumption]. +Unfold sigma; Rewrite <- minus_n_n; Simpl; Replace (plus high O) with high; [Reflexivity | Ring]. +Qed. + +Theorem sigma_eq_arg : (low:nat) (sigma low low)==(f low). +Intro; Unfold sigma; Rewrite <- minus_n_n. +Simpl; Replace (plus low O) with low; [Reflexivity | Ring]. +Qed. + +End Sigma. |