summaryrefslogtreecommitdiff
path: root/theories7/Reals/Rpower.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Rpower.v')
-rw-r--r--theories7/Reals/Rpower.v560
1 files changed, 0 insertions, 560 deletions
diff --git a/theories7/Reals/Rpower.v b/theories7/Reals/Rpower.v
deleted file mode 100644
index 0acfa8d2..00000000
--- a/theories7/Reals/Rpower.v
+++ /dev/null
@@ -1,560 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Rpower.v,v 1.1.2.1 2004/07/16 19:31:35 herbelin Exp $ i*)
-(*i Due to L.Thery i*)
-
-(************************************************************)
-(* Definitions of log and Rpower : R->R->R; main properties *)
-(************************************************************)
-
-Require Rbase.
-Require Rfunctions.
-Require SeqSeries.
-Require Rtrigo.
-Require Ranalysis1.
-Require Exp_prop.
-Require Rsqrt_def.
-Require R_sqrt.
-Require MVT.
-Require Ranalysis4.
-V7only [Import R_scope.]. Open Local Scope R_scope.
-
-Lemma P_Rmin: (P : R -> Prop) (x, y : R) (P x) -> (P y) -> (P (Rmin x y)).
-Intros P x y H1 H2; Unfold Rmin; Case (total_order_Rle x y); Intro; Assumption.
-Qed.
-
-Lemma exp_le_3 : ``(exp 1)<=3``.
-Assert exp_1 : ``(exp 1)<>0``.
-Assert H0 := (exp_pos R1); Red; Intro; Rewrite H in H0; Elim (Rlt_antirefl ? H0).
-Apply Rle_monotony_contra with ``/(exp 1)``.
-Apply Rlt_Rinv; Apply exp_pos.
-Rewrite <- Rinv_l_sym.
-Apply Rle_monotony_contra with ``/3``.
-Apply Rlt_Rinv; Sup0.
-Rewrite Rmult_1r; Rewrite <- (Rmult_sym ``3``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l; Replace ``/(exp 1)`` with ``(exp (-1))``.
-Unfold exp; Case (exist_exp ``-1``); Intros; Simpl; Unfold exp_in in e; Assert H := (alternated_series_ineq [i:nat]``/(INR (fact i))`` x (S O)).
-Cut ``(sum_f_R0 (tg_alt [([i:nat]``/(INR (fact i))``)]) (S (mult (S (S O)) (S O)))) <= x <= (sum_f_R0 (tg_alt [([i:nat]``/(INR (fact i))``)]) (mult (S (S O)) (S O)))``.
-Intro; Elim H0; Clear H0; Intros H0 _; Simpl in H0; Unfold tg_alt in H0; Simpl in H0.
-Replace ``/3`` with ``1*/1+ -1*1*/1+ -1*( -1*1)*/2+ -1*( -1*( -1*1))*/(2+1+1+1+1)``.
-Apply H0.
-Repeat Rewrite Rinv_R1; Repeat Rewrite Rmult_1r; Rewrite Ropp_mul1; Rewrite Rmult_1l; Rewrite Ropp_Ropp; Rewrite Rplus_Ropp_r; Rewrite Rmult_1r; Rewrite Rplus_Ol; Rewrite Rmult_1l; Apply r_Rmult_mult with ``6``.
-Rewrite Rmult_Rplus_distr; Replace ``2+1+1+1+1`` with ``6``.
-Rewrite <- (Rmult_sym ``/6``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1l; Replace ``6`` with ``2*3``.
-Do 2 Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r; Rewrite (Rmult_sym ``3``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
-Ring.
-DiscrR.
-DiscrR.
-Ring.
-DiscrR.
-Ring.
-DiscrR.
-Apply H.
-Unfold Un_decreasing; Intros; Apply Rle_monotony_contra with ``(INR (fact n))``.
-Apply INR_fact_lt_0.
-Apply Rle_monotony_contra with ``(INR (fact (S n)))``.
-Apply INR_fact_lt_0.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Apply le_INR; Apply fact_growing; Apply le_n_Sn.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Assert H0 := (cv_speed_pow_fact R1); Unfold Un_cv; Unfold Un_cv in H0; Intros; Elim (H0 ? H1); Intros; Exists x0; Intros; Unfold R_dist in H2; Unfold R_dist; Replace ``/(INR (fact n))`` with ``(pow 1 n)/(INR (fact n))``.
-Apply (H2 ? H3).
-Unfold Rdiv; Rewrite pow1; Rewrite Rmult_1l; Reflexivity.
-Unfold infinit_sum in e; Unfold Un_cv tg_alt; Intros; Elim (e ? H0); Intros; Exists x0; Intros; Replace (sum_f_R0 ([i:nat]``(pow ( -1) i)*/(INR (fact i))``) n) with (sum_f_R0 ([i:nat]``/(INR (fact i))*(pow ( -1) i)``) n).
-Apply (H1 ? H2).
-Apply sum_eq; Intros; Apply Rmult_sym.
-Apply r_Rmult_mult with ``(exp 1)``.
-Rewrite <- exp_plus; Rewrite Rplus_Ropp_r; Rewrite exp_0; Rewrite <- Rinv_r_sym.
-Reflexivity.
-Assumption.
-Assumption.
-DiscrR.
-Assumption.
-Qed.
-
-(******************************************************************)
-(* Properties of Exp *)
-(******************************************************************)
-
-Theorem exp_increasing: (x, y : R) ``x<y`` -> ``(exp x)<(exp y)``.
-Intros x y H.
-Assert H0 : (derivable exp).
-Apply derivable_exp.
-Assert H1 := (positive_derivative ? H0).
-Unfold strict_increasing in H1.
-Apply H1.
-Intro.
-Replace (derive_pt exp x0 (H0 x0)) with (exp x0).
-Apply exp_pos.
-Symmetry; Apply derive_pt_eq_0.
-Apply (derivable_pt_lim_exp x0).
-Apply H.
-Qed.
-
-Theorem exp_lt_inv: (x, y : R) ``(exp x)<(exp y)`` -> ``x<y``.
-Intros x y H; Case (total_order x y); [Intros H1 | Intros [H1|H1]].
-Assumption.
-Rewrite H1 in H; Elim (Rlt_antirefl ? H).
-Assert H2 := (exp_increasing ? ? H1).
-Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H H2)).
-Qed.
-
-Lemma exp_ineq1 : (x:R) ``0<x`` -> ``1+x < (exp x)``.
-Intros; Apply Rlt_anti_compatibility with ``-(exp 0)``; Rewrite <- (Rplus_sym (exp x)); Assert H0 := (MVT_cor1 exp R0 x derivable_exp H); Elim H0; Intros; Elim H1; Intros; Unfold Rminus in H2; Rewrite H2; Rewrite Ropp_O; Rewrite Rplus_Or; Replace (derive_pt exp x0 (derivable_exp x0)) with (exp x0).
-Rewrite exp_0; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Pattern 1 x; Rewrite <- Rmult_1r; Rewrite (Rmult_sym (exp x0)); Apply Rlt_monotony.
-Apply H.
-Rewrite <- exp_0; Apply exp_increasing; Elim H3; Intros; Assumption.
-Symmetry; Apply derive_pt_eq_0; Apply derivable_pt_lim_exp.
-Qed.
-
-Lemma ln_exists1 : (y:R) ``0<y``->``1<=y``->(sigTT R [z:R]``y==(exp z)``).
-Intros; Pose f := [x:R]``(exp x)-y``; Cut ``(f 0)<=0``.
-Intro; Cut (continuity f).
-Intro; Cut ``0<=(f y)``.
-Intro; Cut ``(f 0)*(f y)<=0``.
-Intro; Assert X := (IVT_cor f R0 y H2 (Rlt_le ? ? H) H4); Elim X; Intros t H5; Apply existTT with t; Elim H5; Intros; Unfold f in H7; Apply Rminus_eq_right; Exact H7.
-Pattern 2 R0; Rewrite <- (Rmult_Or (f y)); Rewrite (Rmult_sym (f R0)); Apply Rle_monotony; Assumption.
-Unfold f; Apply Rle_anti_compatibility with y; Left; Apply Rlt_trans with ``1+y``.
-Rewrite <- (Rplus_sym y); Apply Rlt_compatibility; Apply Rlt_R0_R1.
-Replace ``y+((exp y)-y)`` with (exp y); [Apply (exp_ineq1 y H) | Ring].
-Unfold f; Change (continuity (minus_fct exp (fct_cte y))); Apply continuity_minus; [Apply derivable_continuous; Apply derivable_exp | Apply derivable_continuous; Apply derivable_const].
-Unfold f; Rewrite exp_0; Apply Rle_anti_compatibility with y; Rewrite Rplus_Or; Replace ``y+(1-y)`` with R1; [Apply H0 | Ring].
-Qed.
-
-(**********)
-Lemma ln_exists : (y:R) ``0<y`` -> (sigTT R [z:R]``y==(exp z)``).
-Intros; Case (total_order_Rle R1 y); Intro.
-Apply (ln_exists1 ? H r).
-Assert H0 : ``1<=/y``.
-Apply Rle_monotony_contra with y.
-Apply H.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r; Left; Apply (not_Rle ? ? n).
-Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H).
-Assert H1 : ``0</y``.
-Apply Rlt_Rinv; Apply H.
-Assert H2 := (ln_exists1 ? H1 H0); Elim H2; Intros; Apply existTT with ``-x``; Apply r_Rmult_mult with ``(exp x)/y``.
-Unfold Rdiv; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Rewrite <- (Rmult_sym ``/y``); Rewrite Rmult_assoc; Rewrite <- exp_plus; Rewrite Rplus_Ropp_r; Rewrite exp_0; Rewrite Rmult_1r; Symmetry; Apply p.
-Red; Intro; Rewrite H3 in H; Elim (Rlt_antirefl ? H).
-Unfold Rdiv; Apply prod_neq_R0.
-Assert H3 := (exp_pos x); Red; Intro; Rewrite H4 in H3; Elim (Rlt_antirefl ? H3).
-Apply Rinv_neq_R0; Red; Intro; Rewrite H3 in H; Elim (Rlt_antirefl ? H).
-Qed.
-
-(* Definition of log R+* -> R *)
-Definition Rln [y:posreal] : R := Cases (ln_exists (pos y) (RIneq.cond_pos y)) of (existTT a b) => a end.
-
-(* Extension on R *)
-Definition ln : R->R := [x:R](Cases (total_order_Rlt R0 x) of
- (leftT a) => (Rln (mkposreal x a))
- | (rightT a) => R0 end).
-
-Lemma exp_ln : (x : R) ``0<x`` -> (exp (ln x)) == x.
-Intros; Unfold ln; Case (total_order_Rlt R0 x); Intro.
-Unfold Rln; Case (ln_exists (mkposreal x r) (RIneq.cond_pos (mkposreal x r))); Intros.
-Simpl in e; Symmetry; Apply e.
-Elim n; Apply H.
-Qed.
-
-Theorem exp_inv: (x, y : R) (exp x) == (exp y) -> x == y.
-Intros x y H; Case (total_order x y); [Intros H1 | Intros [H1|H1]]; Auto; Assert H2 := (exp_increasing ? ? H1); Rewrite H in H2; Elim (Rlt_antirefl ? H2).
-Qed.
-
-Theorem exp_Ropp: (x : R) ``(exp (-x)) == /(exp x)``.
-Intros x; Assert H : ``(exp x)<>0``.
-Assert H := (exp_pos x); Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H).
-Apply r_Rmult_mult with r := (exp x).
-Rewrite <- exp_plus; Rewrite Rplus_Ropp_r; Rewrite exp_0.
-Apply Rinv_r_sym.
-Apply H.
-Apply H.
-Qed.
-
-(******************************************************************)
-(* Properties of Ln *)
-(******************************************************************)
-
-Theorem ln_increasing:
- (x, y : R) ``0<x`` -> ``x<y`` -> ``(ln x) < (ln y)``.
-Intros x y H H0; Apply exp_lt_inv.
-Repeat Rewrite exp_ln.
-Apply H0.
-Apply Rlt_trans with x; Assumption.
-Apply H.
-Qed.
-
-Theorem ln_exp: (x : R) (ln (exp x)) == x.
-Intros x; Apply exp_inv.
-Apply exp_ln.
-Apply exp_pos.
-Qed.
-
-Theorem ln_1: ``(ln 1) == 0``.
-Rewrite <- exp_0; Rewrite ln_exp; Reflexivity.
-Qed.
-
-Theorem ln_lt_inv:
- (x, y : R) ``0<x`` -> ``0<y`` -> ``(ln x)<(ln y)`` -> ``x<y``.
-Intros x y H H0 H1; Rewrite <- (exp_ln x); Try Rewrite <- (exp_ln y).
-Apply exp_increasing; Apply H1.
-Assumption.
-Assumption.
-Qed.
-
-Theorem ln_inv: (x, y : R) ``0<x`` -> ``0<y`` -> (ln x) == (ln y) -> x == y.
-Intros x y H H0 H'0; Case (total_order x y); [Intros H1 | Intros [H1|H1]]; Auto.
-Assert H2 := (ln_increasing ? ? H H1); Rewrite H'0 in H2; Elim (Rlt_antirefl ? H2).
-Assert H2 := (ln_increasing ? ? H0 H1); Rewrite H'0 in H2; Elim (Rlt_antirefl ? H2).
-Qed.
-
-Theorem ln_mult: (x, y : R) ``0<x`` -> ``0<y`` -> ``(ln (x*y)) == (ln x)+(ln y)``.
-Intros x y H H0; Apply exp_inv.
-Rewrite exp_plus.
-Repeat Rewrite exp_ln.
-Reflexivity.
-Assumption.
-Assumption.
-Apply Rmult_lt_pos; Assumption.
-Qed.
-
-Theorem ln_Rinv: (x : R) ``0<x`` -> ``(ln (/x)) == -(ln x)``.
-Intros x H; Apply exp_inv; Repeat (Rewrite exp_ln Orelse Rewrite exp_Ropp).
-Reflexivity.
-Assumption.
-Apply Rlt_Rinv; Assumption.
-Qed.
-
-Theorem ln_continue:
- (y : R) ``0<y`` -> (continue_in ln [x : R] (Rlt R0 x) y).
-Intros y H.
-Unfold continue_in limit1_in limit_in; Intros eps Heps.
-Cut (Rlt R1 (exp eps)); [Intros H1 | Idtac].
-Cut (Rlt (exp (Ropp eps)) R1); [Intros H2 | Idtac].
-Exists
- (Rmin (Rmult y (Rminus (exp eps) R1)) (Rmult y (Rminus R1 (exp (Ropp eps)))));
- Split.
-Red; Apply P_Rmin.
-Apply Rmult_lt_pos.
-Assumption.
-Apply Rlt_anti_compatibility with R1.
-Rewrite Rplus_Or; Replace ``(1+((exp eps)-1))`` with (exp eps); [Apply H1 | Ring].
-Apply Rmult_lt_pos.
-Assumption.
-Apply Rlt_anti_compatibility with ``(exp (-eps))``.
-Rewrite Rplus_Or; Replace ``(exp ( -eps))+(1-(exp ( -eps)))`` with R1; [Apply H2 | Ring].
-Unfold dist R_met R_dist; Simpl.
-Intros x ((H3, H4), H5).
-Cut (Rmult y (Rmult x (Rinv y))) == x.
-Intro Hxyy.
-Replace (Rminus (ln x) (ln y)) with (ln (Rmult x (Rinv y))).
-Case (total_order x y); [Intros Hxy | Intros [Hxy|Hxy]].
-Rewrite Rabsolu_left.
-Apply Ropp_Rlt; Rewrite Ropp_Ropp.
-Apply exp_lt_inv.
-Rewrite exp_ln.
-Apply Rlt_monotony_contra with z := y.
-Apply H.
-Rewrite Hxyy.
-Apply Ropp_Rlt.
-Apply Rlt_anti_compatibility with r := y.
-Replace (Rplus y (Ropp (Rmult y (exp (Ropp eps)))))
- with (Rmult y (Rminus R1 (exp (Ropp eps)))); [Idtac | Ring].
-Replace (Rplus y (Ropp x)) with (Rabsolu (Rminus x y)); [Idtac | Ring].
-Apply Rlt_le_trans with 1 := H5; Apply Rmin_r.
-Rewrite Rabsolu_left; [Ring | Idtac].
-Apply (Rlt_minus ? ? Hxy).
-Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)].
-Rewrite <- ln_1.
-Apply ln_increasing.
-Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)].
-Apply Rlt_monotony_contra with z := y.
-Apply H.
-Rewrite Hxyy; Rewrite Rmult_1r; Apply Hxy.
-Rewrite Hxy; Rewrite Rinv_r.
-Rewrite ln_1; Rewrite Rabsolu_R0; Apply Heps.
-Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H).
-Rewrite Rabsolu_right.
-Apply exp_lt_inv.
-Rewrite exp_ln.
-Apply Rlt_monotony_contra with z := y.
-Apply H.
-Rewrite Hxyy.
-Apply Rlt_anti_compatibility with r := (Ropp y).
-Replace (Rplus (Ropp y) (Rmult y (exp eps)))
- with (Rmult y (Rminus (exp eps) R1)); [Idtac | Ring].
-Replace (Rplus (Ropp y) x) with (Rabsolu (Rminus x y)); [Idtac | Ring].
-Apply Rlt_le_trans with 1 := H5; Apply Rmin_l.
-Rewrite Rabsolu_right; [Ring | Idtac].
-Left; Apply (Rgt_minus ? ? Hxy).
-Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)].
-Rewrite <- ln_1.
-Apply Rgt_ge; Red; Apply ln_increasing.
-Apply Rlt_R0_R1.
-Apply Rlt_monotony_contra with z := y.
-Apply H.
-Rewrite Hxyy; Rewrite Rmult_1r; Apply Hxy.
-Rewrite ln_mult.
-Rewrite ln_Rinv.
-Ring.
-Assumption.
-Assumption.
-Apply Rlt_Rinv; Assumption.
-Rewrite (Rmult_sym x); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
-Ring.
-Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H).
-Apply Rlt_monotony_contra with (exp eps).
-Apply exp_pos.
-Rewrite <- exp_plus; Rewrite Rmult_1r; Rewrite Rplus_Ropp_r; Rewrite exp_0; Apply H1.
-Rewrite <- exp_0.
-Apply exp_increasing; Apply Heps.
-Qed.
-
-(******************************************************************)
-(* Definition of Rpower *)
-(******************************************************************)
-
-Definition Rpower := [x : R] [y : R] ``(exp (y*(ln x)))``.
-
-Infix Local "^R" Rpower (at level 2, left associativity) : R_scope.
-
-(******************************************************************)
-(* Properties of Rpower *)
-(******************************************************************)
-
-Theorem Rpower_plus:
- (x, y, z : R) ``(Rpower z (x+y)) == (Rpower z x)*(Rpower z y)``.
-Intros x y z; Unfold Rpower.
-Rewrite Rmult_Rplus_distrl; Rewrite exp_plus; Auto.
-Qed.
-
-Theorem Rpower_mult:
- (x, y, z : R) ``(Rpower (Rpower x y) z) == (Rpower x (y*z))``.
-Intros x y z; Unfold Rpower.
-Rewrite ln_exp.
-Replace (Rmult z (Rmult y (ln x))) with (Rmult (Rmult y z) (ln x)).
-Reflexivity.
-Ring.
-Qed.
-
-Theorem Rpower_O: (x : R) ``0<x`` -> ``(Rpower x 0) == 1``.
-Intros x H; Unfold Rpower.
-Rewrite Rmult_Ol; Apply exp_0.
-Qed.
-
-Theorem Rpower_1: (x : R) ``0<x`` -> ``(Rpower x 1) == x``.
-Intros x H; Unfold Rpower.
-Rewrite Rmult_1l; Apply exp_ln; Apply H.
-Qed.
-
-Theorem Rpower_pow:
- (n : nat) (x : R) ``0<x`` -> (Rpower x (INR n)) == (pow x n).
-Intros n; Elim n; Simpl; Auto; Fold INR.
-Intros x H; Apply Rpower_O; Auto.
-Intros n1; Case n1.
-Intros H x H0; Simpl; Rewrite Rmult_1r; Apply Rpower_1; Auto.
-Intros n0 H x H0; Rewrite Rpower_plus; Rewrite H; Try Rewrite Rpower_1; Try Apply Rmult_sym Orelse Assumption.
-Qed.
-
-Theorem Rpower_lt: (x, y, z : R) ``1<x`` -> ``0<=y`` -> ``y<z`` -> ``(Rpower x y) < (Rpower x z)``.
-Intros x y z H H0 H1.
-Unfold Rpower.
-Apply exp_increasing.
-Apply Rlt_monotony_r.
-Rewrite <- ln_1; Apply ln_increasing.
-Apply Rlt_R0_R1.
-Apply H.
-Apply H1.
-Qed.
-
-Theorem Rpower_sqrt: (x : R) ``0<x`` -> ``(Rpower x (/2)) == (sqrt x)``.
-Intros x H.
-Apply ln_inv.
-Unfold Rpower; Apply exp_pos.
-Apply sqrt_lt_R0; Apply H.
-Apply r_Rmult_mult with (INR (S (S O))).
-Apply exp_inv.
-Fold Rpower.
-Cut (Rpower (Rpower x (Rinv (Rplus R1 R1))) (INR (S (S O)))) == (Rpower (sqrt x) (INR (S (S O)))).
-Unfold Rpower; Auto.
-Rewrite Rpower_mult.
-Rewrite Rinv_l.
-Replace R1 with (INR (S O)); Auto.
-Repeat Rewrite Rpower_pow; Simpl.
-Pattern 1 x; Rewrite <- (sqrt_sqrt x (Rlt_le ? ? H)).
-Ring.
-Apply sqrt_lt_R0; Apply H.
-Apply H.
-Apply not_O_INR; Discriminate.
-Apply not_O_INR; Discriminate.
-Qed.
-
-Theorem Rpower_Ropp: (x, y : R) ``(Rpower x (-y)) == /(Rpower x y)``.
-Unfold Rpower.
-Intros x y; Rewrite Ropp_mul1.
-Apply exp_Ropp.
-Qed.
-
-Theorem Rle_Rpower: (e,n,m : R) ``1<e`` -> ``0<=n`` -> ``n<=m`` -> ``(Rpower e n)<=(Rpower e m)``.
-Intros e n m H H0 H1; Case H1.
-Intros H2; Left; Apply Rpower_lt; Assumption.
-Intros H2; Rewrite H2; Right; Reflexivity.
-Qed.
-
-Theorem ln_lt_2: ``/2<(ln 2)``.
-Apply Rlt_monotony_contra with z := (Rplus R1 R1).
-Sup0.
-Rewrite Rinv_r.
-Apply exp_lt_inv.
-Apply Rle_lt_trans with 1 := exp_le_3.
-Change (Rlt (Rplus R1 (Rplus R1 R1)) (Rpower (Rplus R1 R1) (Rplus R1 R1))).
-Repeat Rewrite Rpower_plus; Repeat Rewrite Rpower_1.
-Repeat Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_Rplus_distr;
- Repeat Rewrite Rmult_1l.
-Pattern 1 ``3``; Rewrite <- Rplus_Or; Replace ``2+2`` with ``3+1``; [Apply Rlt_compatibility; Apply Rlt_R0_R1 | Ring].
-Sup0.
-DiscrR.
-Qed.
-
-(**************************************)
-(* Differentiability of Ln and Rpower *)
-(**************************************)
-
-Theorem limit1_ext: (f, g : R -> R)(D : R -> Prop)(l, x : R) ((x : R) (D x) -> (f x) == (g x)) -> (limit1_in f D l x) -> (limit1_in g D l x).
-Intros f g D l x H; Unfold limit1_in limit_in.
-Intros H0 eps H1; Case (H0 eps); Auto.
-Intros x0 (H2, H3); Exists x0; Split; Auto.
-Intros x1 (H4, H5); Rewrite <- H; Auto.
-Qed.
-
-Theorem limit1_imp: (f : R -> R)(D, D1 : R -> Prop)(l, x : R) ((x : R) (D1 x) -> (D x)) -> (limit1_in f D l x) -> (limit1_in f D1 l x).
-Intros f D D1 l x H; Unfold limit1_in limit_in.
-Intros H0 eps H1; Case (H0 eps H1); Auto.
-Intros alpha (H2, H3); Exists alpha; Split; Auto.
-Intros d (H4, H5); Apply H3; Split; Auto.
-Qed.
-
-Theorem Rinv_Rdiv: (x, y : R) ``x<>0`` -> ``y<>0`` -> ``/(x/y) == y/x``.
-Intros x y H1 H2; Unfold Rdiv; Rewrite Rinv_Rmult.
-Rewrite Rinv_Rinv.
-Apply Rmult_sym.
-Assumption.
-Assumption.
-Apply Rinv_neq_R0; Assumption.
-Qed.
-
-Theorem Dln: (y : R) ``0<y`` -> (D_in ln Rinv [x:R]``0<x`` y).
-Intros y Hy; Unfold D_in.
-Apply limit1_ext with f := [x : R](Rinv (Rdiv (Rminus (exp (ln x)) (exp (ln y))) (Rminus (ln x) (ln y)))).
-Intros x (HD1, HD2); Repeat Rewrite exp_ln.
-Unfold Rdiv; Rewrite Rinv_Rmult.
-Rewrite Rinv_Rinv.
-Apply Rmult_sym.
-Apply Rminus_eq_contra.
-Red; Intros H2; Case HD2.
-Symmetry; Apply (ln_inv ? ? HD1 Hy H2).
-Apply Rminus_eq_contra; Apply (not_sym ? ? HD2).
-Apply Rinv_neq_R0; Apply Rminus_eq_contra; Red; Intros H2; Case HD2; Apply ln_inv; Auto.
-Assumption.
-Assumption.
-Apply limit_inv with f := [x : R] (Rdiv (Rminus (exp (ln x)) (exp (ln y))) (Rminus (ln x) (ln y))).
-Apply limit1_imp with f := [x : R] ([x : R] (Rdiv (Rminus (exp x) (exp (ln y))) (Rminus x (ln y))) (ln x)) D := (Dgf (D_x [x : R] (Rlt R0 x) y) (D_x [x : R] True (ln y)) ln).
-Intros x (H1, H2); Split.
-Split; Auto.
-Split; Auto.
-Red; Intros H3; Case H2; Apply ln_inv; Auto.
-Apply limit_comp with l := (ln y) g := [x : R] (Rdiv (Rminus (exp x) (exp (ln y))) (Rminus x (ln y))) f := ln.
-Apply ln_continue; Auto.
-Assert H0 := (derivable_pt_lim_exp (ln y)); Unfold derivable_pt_lim in H0; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Elim (H0 ? H); Intros; Exists (pos x); Split.
-Apply (RIneq.cond_pos x).
-Intros; Pattern 3 y; Rewrite <- exp_ln.
-Pattern 1 x0; Replace x0 with ``(ln y)+(x0-(ln y))``; [Idtac | Ring].
-Apply H1.
-Elim H2; Intros H3 _; Unfold D_x in H3; Elim H3; Clear H3; Intros _ H3; Apply Rminus_eq_contra; Apply not_sym; Apply H3.
-Elim H2; Clear H2; Intros _ H2; Apply H2.
-Assumption.
-Red; Intro; Rewrite H in Hy; Elim (Rlt_antirefl ? Hy).
-Qed.
-
-Lemma derivable_pt_lim_ln : (x:R) ``0<x`` -> (derivable_pt_lim ln x ``/x``).
-Intros; Assert H0 := (Dln x H); Unfold D_in in H0; Unfold limit1_in in H0; Unfold limit_in in H0; Simpl in H0; Unfold R_dist in H0; Unfold derivable_pt_lim; Intros; Elim (H0 ? H1); Intros; Elim H2; Clear H2; Intros; Pose alp := (Rmin x0 ``x/2``); Assert H4 : ``0<alp``.
-Unfold alp; Unfold Rmin; Case (total_order_Rle x0 ``x/2``); Intro.
-Apply H2.
-Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
-Exists (mkposreal ? H4); Intros; Pattern 2 h; Replace h with ``(x+h)-x``; [Idtac | Ring].
-Apply H3; Split.
-Unfold D_x; Split.
-Case (case_Rabsolu h); Intro.
-Assert H7 : ``(Rabsolu h)<x/2``.
-Apply Rlt_le_trans with alp.
-Apply H6.
-Unfold alp; Apply Rmin_r.
-Apply Rlt_trans with ``x/2``.
-Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
-Rewrite Rabsolu_left in H7.
-Apply Rlt_anti_compatibility with ``-h-x/2``.
-Replace ``-h-x/2+x/2`` with ``-h``; [Idtac | Ring].
-Pattern 2 x; Rewrite double_var.
-Replace ``-h-x/2+(x/2+x/2+h)`` with ``x/2``; [Apply H7 | Ring].
-Apply r.
-Apply gt0_plus_ge0_is_gt0; [Assumption | Apply Rle_sym2; Apply r].
-Apply not_sym; Apply Rminus_not_eq; Replace ``x+h-x`` with h; [Apply H5 | Ring].
-Replace ``x+h-x`` with h; [Apply Rlt_le_trans with alp; [Apply H6 | Unfold alp; Apply Rmin_l] | Ring].
-Qed.
-
-Theorem D_in_imp: (f, g : R -> R)(D, D1 : R -> Prop)(x : R) ((x : R) (D1 x) -> (D x)) -> (D_in f g D x) -> (D_in f g D1 x).
-Intros f g D D1 x H; Unfold D_in.
-Intros H0; Apply limit1_imp with D := (D_x D x); Auto.
-Intros x1 (H1, H2); Split; Auto.
-Qed.
-
-Theorem D_in_ext: (f, g, h : R -> R)(D : R -> Prop) (x : R) (f x) == (g x) -> (D_in h f D x) -> (D_in h g D x).
-Intros f g h D x H; Unfold D_in.
-Rewrite H; Auto.
-Qed.
-
-Theorem Dpower: (y, z : R) ``0<y`` -> (D_in [x:R](Rpower x z) [x:R](Rmult z (Rpower x (Rminus z R1))) [x:R]``0<x`` y).
-Intros y z H; Apply D_in_imp with D := (Dgf [x : R] (Rlt R0 x) [x : R] True ln).
-Intros x H0; Repeat Split.
-Assumption.
-Apply D_in_ext with f := [x : R] (Rmult (Rinv x) (Rmult z (exp (Rmult z (ln x))))).
-Unfold Rminus; Rewrite Rpower_plus; Rewrite Rpower_Ropp; Rewrite (Rpower_1 ? H); Ring.
-Apply Dcomp with f := ln g := [x : R] (exp (Rmult z x)) df := Rinv dg := [x : R] (Rmult z (exp (Rmult z x))).
-Apply (Dln ? H).
-Apply D_in_imp with D := (Dgf [x : R] True [x : R] True [x : R] (Rmult z x)).
-Intros x H1; Repeat Split; Auto.
-Apply (Dcomp [_ : R] True [_ : R] True [x : ?] z exp [x : R] (Rmult z x) exp); Simpl.
-Apply D_in_ext with f := [x : R] (Rmult z R1).
-Apply Rmult_1r.
-Apply (Dmult_const [x : ?] True [x : ?] x [x : ?] R1); Apply Dx.
-Assert H0 := (derivable_pt_lim_D_in exp exp ``z*(ln y)``); Elim H0; Clear H0; Intros _ H0; Apply H0; Apply derivable_pt_lim_exp.
-Qed.
-
-Theorem derivable_pt_lim_power: (x, y : R) (Rlt R0 x) -> (derivable_pt_lim [x : ?] (Rpower x y) x (Rmult y (Rpower x (Rminus y R1)))).
-Intros x y H.
-Unfold Rminus; Rewrite Rpower_plus.
-Rewrite Rpower_Ropp.
-Rewrite Rpower_1; Auto.
-Rewrite <- Rmult_assoc.
-Unfold Rpower.
-Apply derivable_pt_lim_comp with f1 := ln f2 := [x : ?] (exp (Rmult y x)).
-Apply derivable_pt_lim_ln; Assumption.
-Rewrite (Rmult_sym y).
-Apply derivable_pt_lim_comp with f1 := [x : ?] (Rmult y x) f2 := exp.
-Pattern 2 y; Replace y with (Rplus (Rmult R0 (ln x)) (Rmult y R1)).
-Apply derivable_pt_lim_mult with f1 := [x : R] y f2 := [x : R] x.
-Apply derivable_pt_lim_const with a := y.
-Apply derivable_pt_lim_id.
-Ring.
-Apply derivable_pt_lim_exp.
-Qed.