diff options
Diffstat (limited to 'theories7/Reals/Rpower.v')
-rw-r--r-- | theories7/Reals/Rpower.v | 560 |
1 files changed, 560 insertions, 0 deletions
diff --git a/theories7/Reals/Rpower.v b/theories7/Reals/Rpower.v new file mode 100644 index 00000000..0acfa8d2 --- /dev/null +++ b/theories7/Reals/Rpower.v @@ -0,0 +1,560 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Rpower.v,v 1.1.2.1 2004/07/16 19:31:35 herbelin Exp $ i*) +(*i Due to L.Thery i*) + +(************************************************************) +(* Definitions of log and Rpower : R->R->R; main properties *) +(************************************************************) + +Require Rbase. +Require Rfunctions. +Require SeqSeries. +Require Rtrigo. +Require Ranalysis1. +Require Exp_prop. +Require Rsqrt_def. +Require R_sqrt. +Require MVT. +Require Ranalysis4. +V7only [Import R_scope.]. Open Local Scope R_scope. + +Lemma P_Rmin: (P : R -> Prop) (x, y : R) (P x) -> (P y) -> (P (Rmin x y)). +Intros P x y H1 H2; Unfold Rmin; Case (total_order_Rle x y); Intro; Assumption. +Qed. + +Lemma exp_le_3 : ``(exp 1)<=3``. +Assert exp_1 : ``(exp 1)<>0``. +Assert H0 := (exp_pos R1); Red; Intro; Rewrite H in H0; Elim (Rlt_antirefl ? H0). +Apply Rle_monotony_contra with ``/(exp 1)``. +Apply Rlt_Rinv; Apply exp_pos. +Rewrite <- Rinv_l_sym. +Apply Rle_monotony_contra with ``/3``. +Apply Rlt_Rinv; Sup0. +Rewrite Rmult_1r; Rewrite <- (Rmult_sym ``3``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1l; Replace ``/(exp 1)`` with ``(exp (-1))``. +Unfold exp; Case (exist_exp ``-1``); Intros; Simpl; Unfold exp_in in e; Assert H := (alternated_series_ineq [i:nat]``/(INR (fact i))`` x (S O)). +Cut ``(sum_f_R0 (tg_alt [([i:nat]``/(INR (fact i))``)]) (S (mult (S (S O)) (S O)))) <= x <= (sum_f_R0 (tg_alt [([i:nat]``/(INR (fact i))``)]) (mult (S (S O)) (S O)))``. +Intro; Elim H0; Clear H0; Intros H0 _; Simpl in H0; Unfold tg_alt in H0; Simpl in H0. +Replace ``/3`` with ``1*/1+ -1*1*/1+ -1*( -1*1)*/2+ -1*( -1*( -1*1))*/(2+1+1+1+1)``. +Apply H0. +Repeat Rewrite Rinv_R1; Repeat Rewrite Rmult_1r; Rewrite Ropp_mul1; Rewrite Rmult_1l; Rewrite Ropp_Ropp; Rewrite Rplus_Ropp_r; Rewrite Rmult_1r; Rewrite Rplus_Ol; Rewrite Rmult_1l; Apply r_Rmult_mult with ``6``. +Rewrite Rmult_Rplus_distr; Replace ``2+1+1+1+1`` with ``6``. +Rewrite <- (Rmult_sym ``/6``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. +Rewrite Rmult_1l; Replace ``6`` with ``2*3``. +Do 2 Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. +Rewrite Rmult_1r; Rewrite (Rmult_sym ``3``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. +Ring. +DiscrR. +DiscrR. +Ring. +DiscrR. +Ring. +DiscrR. +Apply H. +Unfold Un_decreasing; Intros; Apply Rle_monotony_contra with ``(INR (fact n))``. +Apply INR_fact_lt_0. +Apply Rle_monotony_contra with ``(INR (fact (S n)))``. +Apply INR_fact_lt_0. +Rewrite <- Rinv_r_sym. +Rewrite Rmult_1r; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1r; Apply le_INR; Apply fact_growing; Apply le_n_Sn. +Apply INR_fact_neq_0. +Apply INR_fact_neq_0. +Assert H0 := (cv_speed_pow_fact R1); Unfold Un_cv; Unfold Un_cv in H0; Intros; Elim (H0 ? H1); Intros; Exists x0; Intros; Unfold R_dist in H2; Unfold R_dist; Replace ``/(INR (fact n))`` with ``(pow 1 n)/(INR (fact n))``. +Apply (H2 ? H3). +Unfold Rdiv; Rewrite pow1; Rewrite Rmult_1l; Reflexivity. +Unfold infinit_sum in e; Unfold Un_cv tg_alt; Intros; Elim (e ? H0); Intros; Exists x0; Intros; Replace (sum_f_R0 ([i:nat]``(pow ( -1) i)*/(INR (fact i))``) n) with (sum_f_R0 ([i:nat]``/(INR (fact i))*(pow ( -1) i)``) n). +Apply (H1 ? H2). +Apply sum_eq; Intros; Apply Rmult_sym. +Apply r_Rmult_mult with ``(exp 1)``. +Rewrite <- exp_plus; Rewrite Rplus_Ropp_r; Rewrite exp_0; Rewrite <- Rinv_r_sym. +Reflexivity. +Assumption. +Assumption. +DiscrR. +Assumption. +Qed. + +(******************************************************************) +(* Properties of Exp *) +(******************************************************************) + +Theorem exp_increasing: (x, y : R) ``x<y`` -> ``(exp x)<(exp y)``. +Intros x y H. +Assert H0 : (derivable exp). +Apply derivable_exp. +Assert H1 := (positive_derivative ? H0). +Unfold strict_increasing in H1. +Apply H1. +Intro. +Replace (derive_pt exp x0 (H0 x0)) with (exp x0). +Apply exp_pos. +Symmetry; Apply derive_pt_eq_0. +Apply (derivable_pt_lim_exp x0). +Apply H. +Qed. + +Theorem exp_lt_inv: (x, y : R) ``(exp x)<(exp y)`` -> ``x<y``. +Intros x y H; Case (total_order x y); [Intros H1 | Intros [H1|H1]]. +Assumption. +Rewrite H1 in H; Elim (Rlt_antirefl ? H). +Assert H2 := (exp_increasing ? ? H1). +Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H H2)). +Qed. + +Lemma exp_ineq1 : (x:R) ``0<x`` -> ``1+x < (exp x)``. +Intros; Apply Rlt_anti_compatibility with ``-(exp 0)``; Rewrite <- (Rplus_sym (exp x)); Assert H0 := (MVT_cor1 exp R0 x derivable_exp H); Elim H0; Intros; Elim H1; Intros; Unfold Rminus in H2; Rewrite H2; Rewrite Ropp_O; Rewrite Rplus_Or; Replace (derive_pt exp x0 (derivable_exp x0)) with (exp x0). +Rewrite exp_0; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Pattern 1 x; Rewrite <- Rmult_1r; Rewrite (Rmult_sym (exp x0)); Apply Rlt_monotony. +Apply H. +Rewrite <- exp_0; Apply exp_increasing; Elim H3; Intros; Assumption. +Symmetry; Apply derive_pt_eq_0; Apply derivable_pt_lim_exp. +Qed. + +Lemma ln_exists1 : (y:R) ``0<y``->``1<=y``->(sigTT R [z:R]``y==(exp z)``). +Intros; Pose f := [x:R]``(exp x)-y``; Cut ``(f 0)<=0``. +Intro; Cut (continuity f). +Intro; Cut ``0<=(f y)``. +Intro; Cut ``(f 0)*(f y)<=0``. +Intro; Assert X := (IVT_cor f R0 y H2 (Rlt_le ? ? H) H4); Elim X; Intros t H5; Apply existTT with t; Elim H5; Intros; Unfold f in H7; Apply Rminus_eq_right; Exact H7. +Pattern 2 R0; Rewrite <- (Rmult_Or (f y)); Rewrite (Rmult_sym (f R0)); Apply Rle_monotony; Assumption. +Unfold f; Apply Rle_anti_compatibility with y; Left; Apply Rlt_trans with ``1+y``. +Rewrite <- (Rplus_sym y); Apply Rlt_compatibility; Apply Rlt_R0_R1. +Replace ``y+((exp y)-y)`` with (exp y); [Apply (exp_ineq1 y H) | Ring]. +Unfold f; Change (continuity (minus_fct exp (fct_cte y))); Apply continuity_minus; [Apply derivable_continuous; Apply derivable_exp | Apply derivable_continuous; Apply derivable_const]. +Unfold f; Rewrite exp_0; Apply Rle_anti_compatibility with y; Rewrite Rplus_Or; Replace ``y+(1-y)`` with R1; [Apply H0 | Ring]. +Qed. + +(**********) +Lemma ln_exists : (y:R) ``0<y`` -> (sigTT R [z:R]``y==(exp z)``). +Intros; Case (total_order_Rle R1 y); Intro. +Apply (ln_exists1 ? H r). +Assert H0 : ``1<=/y``. +Apply Rle_monotony_contra with y. +Apply H. +Rewrite <- Rinv_r_sym. +Rewrite Rmult_1r; Left; Apply (not_Rle ? ? n). +Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H). +Assert H1 : ``0</y``. +Apply Rlt_Rinv; Apply H. +Assert H2 := (ln_exists1 ? H1 H0); Elim H2; Intros; Apply existTT with ``-x``; Apply r_Rmult_mult with ``(exp x)/y``. +Unfold Rdiv; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. +Rewrite Rmult_1r; Rewrite <- (Rmult_sym ``/y``); Rewrite Rmult_assoc; Rewrite <- exp_plus; Rewrite Rplus_Ropp_r; Rewrite exp_0; Rewrite Rmult_1r; Symmetry; Apply p. +Red; Intro; Rewrite H3 in H; Elim (Rlt_antirefl ? H). +Unfold Rdiv; Apply prod_neq_R0. +Assert H3 := (exp_pos x); Red; Intro; Rewrite H4 in H3; Elim (Rlt_antirefl ? H3). +Apply Rinv_neq_R0; Red; Intro; Rewrite H3 in H; Elim (Rlt_antirefl ? H). +Qed. + +(* Definition of log R+* -> R *) +Definition Rln [y:posreal] : R := Cases (ln_exists (pos y) (RIneq.cond_pos y)) of (existTT a b) => a end. + +(* Extension on R *) +Definition ln : R->R := [x:R](Cases (total_order_Rlt R0 x) of + (leftT a) => (Rln (mkposreal x a)) + | (rightT a) => R0 end). + +Lemma exp_ln : (x : R) ``0<x`` -> (exp (ln x)) == x. +Intros; Unfold ln; Case (total_order_Rlt R0 x); Intro. +Unfold Rln; Case (ln_exists (mkposreal x r) (RIneq.cond_pos (mkposreal x r))); Intros. +Simpl in e; Symmetry; Apply e. +Elim n; Apply H. +Qed. + +Theorem exp_inv: (x, y : R) (exp x) == (exp y) -> x == y. +Intros x y H; Case (total_order x y); [Intros H1 | Intros [H1|H1]]; Auto; Assert H2 := (exp_increasing ? ? H1); Rewrite H in H2; Elim (Rlt_antirefl ? H2). +Qed. + +Theorem exp_Ropp: (x : R) ``(exp (-x)) == /(exp x)``. +Intros x; Assert H : ``(exp x)<>0``. +Assert H := (exp_pos x); Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H). +Apply r_Rmult_mult with r := (exp x). +Rewrite <- exp_plus; Rewrite Rplus_Ropp_r; Rewrite exp_0. +Apply Rinv_r_sym. +Apply H. +Apply H. +Qed. + +(******************************************************************) +(* Properties of Ln *) +(******************************************************************) + +Theorem ln_increasing: + (x, y : R) ``0<x`` -> ``x<y`` -> ``(ln x) < (ln y)``. +Intros x y H H0; Apply exp_lt_inv. +Repeat Rewrite exp_ln. +Apply H0. +Apply Rlt_trans with x; Assumption. +Apply H. +Qed. + +Theorem ln_exp: (x : R) (ln (exp x)) == x. +Intros x; Apply exp_inv. +Apply exp_ln. +Apply exp_pos. +Qed. + +Theorem ln_1: ``(ln 1) == 0``. +Rewrite <- exp_0; Rewrite ln_exp; Reflexivity. +Qed. + +Theorem ln_lt_inv: + (x, y : R) ``0<x`` -> ``0<y`` -> ``(ln x)<(ln y)`` -> ``x<y``. +Intros x y H H0 H1; Rewrite <- (exp_ln x); Try Rewrite <- (exp_ln y). +Apply exp_increasing; Apply H1. +Assumption. +Assumption. +Qed. + +Theorem ln_inv: (x, y : R) ``0<x`` -> ``0<y`` -> (ln x) == (ln y) -> x == y. +Intros x y H H0 H'0; Case (total_order x y); [Intros H1 | Intros [H1|H1]]; Auto. +Assert H2 := (ln_increasing ? ? H H1); Rewrite H'0 in H2; Elim (Rlt_antirefl ? H2). +Assert H2 := (ln_increasing ? ? H0 H1); Rewrite H'0 in H2; Elim (Rlt_antirefl ? H2). +Qed. + +Theorem ln_mult: (x, y : R) ``0<x`` -> ``0<y`` -> ``(ln (x*y)) == (ln x)+(ln y)``. +Intros x y H H0; Apply exp_inv. +Rewrite exp_plus. +Repeat Rewrite exp_ln. +Reflexivity. +Assumption. +Assumption. +Apply Rmult_lt_pos; Assumption. +Qed. + +Theorem ln_Rinv: (x : R) ``0<x`` -> ``(ln (/x)) == -(ln x)``. +Intros x H; Apply exp_inv; Repeat (Rewrite exp_ln Orelse Rewrite exp_Ropp). +Reflexivity. +Assumption. +Apply Rlt_Rinv; Assumption. +Qed. + +Theorem ln_continue: + (y : R) ``0<y`` -> (continue_in ln [x : R] (Rlt R0 x) y). +Intros y H. +Unfold continue_in limit1_in limit_in; Intros eps Heps. +Cut (Rlt R1 (exp eps)); [Intros H1 | Idtac]. +Cut (Rlt (exp (Ropp eps)) R1); [Intros H2 | Idtac]. +Exists + (Rmin (Rmult y (Rminus (exp eps) R1)) (Rmult y (Rminus R1 (exp (Ropp eps))))); + Split. +Red; Apply P_Rmin. +Apply Rmult_lt_pos. +Assumption. +Apply Rlt_anti_compatibility with R1. +Rewrite Rplus_Or; Replace ``(1+((exp eps)-1))`` with (exp eps); [Apply H1 | Ring]. +Apply Rmult_lt_pos. +Assumption. +Apply Rlt_anti_compatibility with ``(exp (-eps))``. +Rewrite Rplus_Or; Replace ``(exp ( -eps))+(1-(exp ( -eps)))`` with R1; [Apply H2 | Ring]. +Unfold dist R_met R_dist; Simpl. +Intros x ((H3, H4), H5). +Cut (Rmult y (Rmult x (Rinv y))) == x. +Intro Hxyy. +Replace (Rminus (ln x) (ln y)) with (ln (Rmult x (Rinv y))). +Case (total_order x y); [Intros Hxy | Intros [Hxy|Hxy]]. +Rewrite Rabsolu_left. +Apply Ropp_Rlt; Rewrite Ropp_Ropp. +Apply exp_lt_inv. +Rewrite exp_ln. +Apply Rlt_monotony_contra with z := y. +Apply H. +Rewrite Hxyy. +Apply Ropp_Rlt. +Apply Rlt_anti_compatibility with r := y. +Replace (Rplus y (Ropp (Rmult y (exp (Ropp eps))))) + with (Rmult y (Rminus R1 (exp (Ropp eps)))); [Idtac | Ring]. +Replace (Rplus y (Ropp x)) with (Rabsolu (Rminus x y)); [Idtac | Ring]. +Apply Rlt_le_trans with 1 := H5; Apply Rmin_r. +Rewrite Rabsolu_left; [Ring | Idtac]. +Apply (Rlt_minus ? ? Hxy). +Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)]. +Rewrite <- ln_1. +Apply ln_increasing. +Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)]. +Apply Rlt_monotony_contra with z := y. +Apply H. +Rewrite Hxyy; Rewrite Rmult_1r; Apply Hxy. +Rewrite Hxy; Rewrite Rinv_r. +Rewrite ln_1; Rewrite Rabsolu_R0; Apply Heps. +Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H). +Rewrite Rabsolu_right. +Apply exp_lt_inv. +Rewrite exp_ln. +Apply Rlt_monotony_contra with z := y. +Apply H. +Rewrite Hxyy. +Apply Rlt_anti_compatibility with r := (Ropp y). +Replace (Rplus (Ropp y) (Rmult y (exp eps))) + with (Rmult y (Rminus (exp eps) R1)); [Idtac | Ring]. +Replace (Rplus (Ropp y) x) with (Rabsolu (Rminus x y)); [Idtac | Ring]. +Apply Rlt_le_trans with 1 := H5; Apply Rmin_l. +Rewrite Rabsolu_right; [Ring | Idtac]. +Left; Apply (Rgt_minus ? ? Hxy). +Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)]. +Rewrite <- ln_1. +Apply Rgt_ge; Red; Apply ln_increasing. +Apply Rlt_R0_R1. +Apply Rlt_monotony_contra with z := y. +Apply H. +Rewrite Hxyy; Rewrite Rmult_1r; Apply Hxy. +Rewrite ln_mult. +Rewrite ln_Rinv. +Ring. +Assumption. +Assumption. +Apply Rlt_Rinv; Assumption. +Rewrite (Rmult_sym x); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. +Ring. +Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H). +Apply Rlt_monotony_contra with (exp eps). +Apply exp_pos. +Rewrite <- exp_plus; Rewrite Rmult_1r; Rewrite Rplus_Ropp_r; Rewrite exp_0; Apply H1. +Rewrite <- exp_0. +Apply exp_increasing; Apply Heps. +Qed. + +(******************************************************************) +(* Definition of Rpower *) +(******************************************************************) + +Definition Rpower := [x : R] [y : R] ``(exp (y*(ln x)))``. + +Infix Local "^R" Rpower (at level 2, left associativity) : R_scope. + +(******************************************************************) +(* Properties of Rpower *) +(******************************************************************) + +Theorem Rpower_plus: + (x, y, z : R) ``(Rpower z (x+y)) == (Rpower z x)*(Rpower z y)``. +Intros x y z; Unfold Rpower. +Rewrite Rmult_Rplus_distrl; Rewrite exp_plus; Auto. +Qed. + +Theorem Rpower_mult: + (x, y, z : R) ``(Rpower (Rpower x y) z) == (Rpower x (y*z))``. +Intros x y z; Unfold Rpower. +Rewrite ln_exp. +Replace (Rmult z (Rmult y (ln x))) with (Rmult (Rmult y z) (ln x)). +Reflexivity. +Ring. +Qed. + +Theorem Rpower_O: (x : R) ``0<x`` -> ``(Rpower x 0) == 1``. +Intros x H; Unfold Rpower. +Rewrite Rmult_Ol; Apply exp_0. +Qed. + +Theorem Rpower_1: (x : R) ``0<x`` -> ``(Rpower x 1) == x``. +Intros x H; Unfold Rpower. +Rewrite Rmult_1l; Apply exp_ln; Apply H. +Qed. + +Theorem Rpower_pow: + (n : nat) (x : R) ``0<x`` -> (Rpower x (INR n)) == (pow x n). +Intros n; Elim n; Simpl; Auto; Fold INR. +Intros x H; Apply Rpower_O; Auto. +Intros n1; Case n1. +Intros H x H0; Simpl; Rewrite Rmult_1r; Apply Rpower_1; Auto. +Intros n0 H x H0; Rewrite Rpower_plus; Rewrite H; Try Rewrite Rpower_1; Try Apply Rmult_sym Orelse Assumption. +Qed. + +Theorem Rpower_lt: (x, y, z : R) ``1<x`` -> ``0<=y`` -> ``y<z`` -> ``(Rpower x y) < (Rpower x z)``. +Intros x y z H H0 H1. +Unfold Rpower. +Apply exp_increasing. +Apply Rlt_monotony_r. +Rewrite <- ln_1; Apply ln_increasing. +Apply Rlt_R0_R1. +Apply H. +Apply H1. +Qed. + +Theorem Rpower_sqrt: (x : R) ``0<x`` -> ``(Rpower x (/2)) == (sqrt x)``. +Intros x H. +Apply ln_inv. +Unfold Rpower; Apply exp_pos. +Apply sqrt_lt_R0; Apply H. +Apply r_Rmult_mult with (INR (S (S O))). +Apply exp_inv. +Fold Rpower. +Cut (Rpower (Rpower x (Rinv (Rplus R1 R1))) (INR (S (S O)))) == (Rpower (sqrt x) (INR (S (S O)))). +Unfold Rpower; Auto. +Rewrite Rpower_mult. +Rewrite Rinv_l. +Replace R1 with (INR (S O)); Auto. +Repeat Rewrite Rpower_pow; Simpl. +Pattern 1 x; Rewrite <- (sqrt_sqrt x (Rlt_le ? ? H)). +Ring. +Apply sqrt_lt_R0; Apply H. +Apply H. +Apply not_O_INR; Discriminate. +Apply not_O_INR; Discriminate. +Qed. + +Theorem Rpower_Ropp: (x, y : R) ``(Rpower x (-y)) == /(Rpower x y)``. +Unfold Rpower. +Intros x y; Rewrite Ropp_mul1. +Apply exp_Ropp. +Qed. + +Theorem Rle_Rpower: (e,n,m : R) ``1<e`` -> ``0<=n`` -> ``n<=m`` -> ``(Rpower e n)<=(Rpower e m)``. +Intros e n m H H0 H1; Case H1. +Intros H2; Left; Apply Rpower_lt; Assumption. +Intros H2; Rewrite H2; Right; Reflexivity. +Qed. + +Theorem ln_lt_2: ``/2<(ln 2)``. +Apply Rlt_monotony_contra with z := (Rplus R1 R1). +Sup0. +Rewrite Rinv_r. +Apply exp_lt_inv. +Apply Rle_lt_trans with 1 := exp_le_3. +Change (Rlt (Rplus R1 (Rplus R1 R1)) (Rpower (Rplus R1 R1) (Rplus R1 R1))). +Repeat Rewrite Rpower_plus; Repeat Rewrite Rpower_1. +Repeat Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_Rplus_distr; + Repeat Rewrite Rmult_1l. +Pattern 1 ``3``; Rewrite <- Rplus_Or; Replace ``2+2`` with ``3+1``; [Apply Rlt_compatibility; Apply Rlt_R0_R1 | Ring]. +Sup0. +DiscrR. +Qed. + +(**************************************) +(* Differentiability of Ln and Rpower *) +(**************************************) + +Theorem limit1_ext: (f, g : R -> R)(D : R -> Prop)(l, x : R) ((x : R) (D x) -> (f x) == (g x)) -> (limit1_in f D l x) -> (limit1_in g D l x). +Intros f g D l x H; Unfold limit1_in limit_in. +Intros H0 eps H1; Case (H0 eps); Auto. +Intros x0 (H2, H3); Exists x0; Split; Auto. +Intros x1 (H4, H5); Rewrite <- H; Auto. +Qed. + +Theorem limit1_imp: (f : R -> R)(D, D1 : R -> Prop)(l, x : R) ((x : R) (D1 x) -> (D x)) -> (limit1_in f D l x) -> (limit1_in f D1 l x). +Intros f D D1 l x H; Unfold limit1_in limit_in. +Intros H0 eps H1; Case (H0 eps H1); Auto. +Intros alpha (H2, H3); Exists alpha; Split; Auto. +Intros d (H4, H5); Apply H3; Split; Auto. +Qed. + +Theorem Rinv_Rdiv: (x, y : R) ``x<>0`` -> ``y<>0`` -> ``/(x/y) == y/x``. +Intros x y H1 H2; Unfold Rdiv; Rewrite Rinv_Rmult. +Rewrite Rinv_Rinv. +Apply Rmult_sym. +Assumption. +Assumption. +Apply Rinv_neq_R0; Assumption. +Qed. + +Theorem Dln: (y : R) ``0<y`` -> (D_in ln Rinv [x:R]``0<x`` y). +Intros y Hy; Unfold D_in. +Apply limit1_ext with f := [x : R](Rinv (Rdiv (Rminus (exp (ln x)) (exp (ln y))) (Rminus (ln x) (ln y)))). +Intros x (HD1, HD2); Repeat Rewrite exp_ln. +Unfold Rdiv; Rewrite Rinv_Rmult. +Rewrite Rinv_Rinv. +Apply Rmult_sym. +Apply Rminus_eq_contra. +Red; Intros H2; Case HD2. +Symmetry; Apply (ln_inv ? ? HD1 Hy H2). +Apply Rminus_eq_contra; Apply (not_sym ? ? HD2). +Apply Rinv_neq_R0; Apply Rminus_eq_contra; Red; Intros H2; Case HD2; Apply ln_inv; Auto. +Assumption. +Assumption. +Apply limit_inv with f := [x : R] (Rdiv (Rminus (exp (ln x)) (exp (ln y))) (Rminus (ln x) (ln y))). +Apply limit1_imp with f := [x : R] ([x : R] (Rdiv (Rminus (exp x) (exp (ln y))) (Rminus x (ln y))) (ln x)) D := (Dgf (D_x [x : R] (Rlt R0 x) y) (D_x [x : R] True (ln y)) ln). +Intros x (H1, H2); Split. +Split; Auto. +Split; Auto. +Red; Intros H3; Case H2; Apply ln_inv; Auto. +Apply limit_comp with l := (ln y) g := [x : R] (Rdiv (Rminus (exp x) (exp (ln y))) (Rminus x (ln y))) f := ln. +Apply ln_continue; Auto. +Assert H0 := (derivable_pt_lim_exp (ln y)); Unfold derivable_pt_lim in H0; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Elim (H0 ? H); Intros; Exists (pos x); Split. +Apply (RIneq.cond_pos x). +Intros; Pattern 3 y; Rewrite <- exp_ln. +Pattern 1 x0; Replace x0 with ``(ln y)+(x0-(ln y))``; [Idtac | Ring]. +Apply H1. +Elim H2; Intros H3 _; Unfold D_x in H3; Elim H3; Clear H3; Intros _ H3; Apply Rminus_eq_contra; Apply not_sym; Apply H3. +Elim H2; Clear H2; Intros _ H2; Apply H2. +Assumption. +Red; Intro; Rewrite H in Hy; Elim (Rlt_antirefl ? Hy). +Qed. + +Lemma derivable_pt_lim_ln : (x:R) ``0<x`` -> (derivable_pt_lim ln x ``/x``). +Intros; Assert H0 := (Dln x H); Unfold D_in in H0; Unfold limit1_in in H0; Unfold limit_in in H0; Simpl in H0; Unfold R_dist in H0; Unfold derivable_pt_lim; Intros; Elim (H0 ? H1); Intros; Elim H2; Clear H2; Intros; Pose alp := (Rmin x0 ``x/2``); Assert H4 : ``0<alp``. +Unfold alp; Unfold Rmin; Case (total_order_Rle x0 ``x/2``); Intro. +Apply H2. +Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]. +Exists (mkposreal ? H4); Intros; Pattern 2 h; Replace h with ``(x+h)-x``; [Idtac | Ring]. +Apply H3; Split. +Unfold D_x; Split. +Case (case_Rabsolu h); Intro. +Assert H7 : ``(Rabsolu h)<x/2``. +Apply Rlt_le_trans with alp. +Apply H6. +Unfold alp; Apply Rmin_r. +Apply Rlt_trans with ``x/2``. +Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]. +Rewrite Rabsolu_left in H7. +Apply Rlt_anti_compatibility with ``-h-x/2``. +Replace ``-h-x/2+x/2`` with ``-h``; [Idtac | Ring]. +Pattern 2 x; Rewrite double_var. +Replace ``-h-x/2+(x/2+x/2+h)`` with ``x/2``; [Apply H7 | Ring]. +Apply r. +Apply gt0_plus_ge0_is_gt0; [Assumption | Apply Rle_sym2; Apply r]. +Apply not_sym; Apply Rminus_not_eq; Replace ``x+h-x`` with h; [Apply H5 | Ring]. +Replace ``x+h-x`` with h; [Apply Rlt_le_trans with alp; [Apply H6 | Unfold alp; Apply Rmin_l] | Ring]. +Qed. + +Theorem D_in_imp: (f, g : R -> R)(D, D1 : R -> Prop)(x : R) ((x : R) (D1 x) -> (D x)) -> (D_in f g D x) -> (D_in f g D1 x). +Intros f g D D1 x H; Unfold D_in. +Intros H0; Apply limit1_imp with D := (D_x D x); Auto. +Intros x1 (H1, H2); Split; Auto. +Qed. + +Theorem D_in_ext: (f, g, h : R -> R)(D : R -> Prop) (x : R) (f x) == (g x) -> (D_in h f D x) -> (D_in h g D x). +Intros f g h D x H; Unfold D_in. +Rewrite H; Auto. +Qed. + +Theorem Dpower: (y, z : R) ``0<y`` -> (D_in [x:R](Rpower x z) [x:R](Rmult z (Rpower x (Rminus z R1))) [x:R]``0<x`` y). +Intros y z H; Apply D_in_imp with D := (Dgf [x : R] (Rlt R0 x) [x : R] True ln). +Intros x H0; Repeat Split. +Assumption. +Apply D_in_ext with f := [x : R] (Rmult (Rinv x) (Rmult z (exp (Rmult z (ln x))))). +Unfold Rminus; Rewrite Rpower_plus; Rewrite Rpower_Ropp; Rewrite (Rpower_1 ? H); Ring. +Apply Dcomp with f := ln g := [x : R] (exp (Rmult z x)) df := Rinv dg := [x : R] (Rmult z (exp (Rmult z x))). +Apply (Dln ? H). +Apply D_in_imp with D := (Dgf [x : R] True [x : R] True [x : R] (Rmult z x)). +Intros x H1; Repeat Split; Auto. +Apply (Dcomp [_ : R] True [_ : R] True [x : ?] z exp [x : R] (Rmult z x) exp); Simpl. +Apply D_in_ext with f := [x : R] (Rmult z R1). +Apply Rmult_1r. +Apply (Dmult_const [x : ?] True [x : ?] x [x : ?] R1); Apply Dx. +Assert H0 := (derivable_pt_lim_D_in exp exp ``z*(ln y)``); Elim H0; Clear H0; Intros _ H0; Apply H0; Apply derivable_pt_lim_exp. +Qed. + +Theorem derivable_pt_lim_power: (x, y : R) (Rlt R0 x) -> (derivable_pt_lim [x : ?] (Rpower x y) x (Rmult y (Rpower x (Rminus y R1)))). +Intros x y H. +Unfold Rminus; Rewrite Rpower_plus. +Rewrite Rpower_Ropp. +Rewrite Rpower_1; Auto. +Rewrite <- Rmult_assoc. +Unfold Rpower. +Apply derivable_pt_lim_comp with f1 := ln f2 := [x : ?] (exp (Rmult y x)). +Apply derivable_pt_lim_ln; Assumption. +Rewrite (Rmult_sym y). +Apply derivable_pt_lim_comp with f1 := [x : ?] (Rmult y x) f2 := exp. +Pattern 2 y; Replace y with (Rplus (Rmult R0 (ln x)) (Rmult y R1)). +Apply derivable_pt_lim_mult with f1 := [x : R] y f2 := [x : R] x. +Apply derivable_pt_lim_const with a := y. +Apply derivable_pt_lim_id. +Ring. +Apply derivable_pt_lim_exp. +Qed. |