summaryrefslogtreecommitdiff
path: root/theories7/Reals/Rlimit.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Rlimit.v')
-rw-r--r--theories7/Reals/Rlimit.v539
1 files changed, 539 insertions, 0 deletions
diff --git a/theories7/Reals/Rlimit.v b/theories7/Reals/Rlimit.v
new file mode 100644
index 00000000..3308b2e3
--- /dev/null
+++ b/theories7/Reals/Rlimit.v
@@ -0,0 +1,539 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Rlimit.v,v 1.1.2.1 2004/07/16 19:31:35 herbelin Exp $ i*)
+
+(*********************************************************)
+(* Definition of the limit *)
+(* *)
+(*********************************************************)
+
+Require Rbase.
+Require Rfunctions.
+Require Classical_Prop.
+Require Fourier.
+V7only [Import R_scope.]. Open Local Scope R_scope.
+
+(*******************************)
+(* Calculus *)
+(*******************************)
+(*********)
+Lemma eps2_Rgt_R0:(eps:R)(Rgt eps R0)->
+ (Rgt (Rmult eps (Rinv (Rplus R1 R1))) R0).
+Intros;Fourier.
+Qed.
+
+(*********)
+Lemma eps2:(eps:R)(Rplus (Rmult eps (Rinv (Rplus R1 R1)))
+ (Rmult eps (Rinv (Rplus R1 R1))))==eps.
+Intro esp.
+Assert H := (double_var esp).
+Unfold Rdiv in H.
+Symmetry; Exact H.
+Qed.
+
+(*********)
+Lemma eps4:(eps:R)
+ (Rplus (Rmult eps (Rinv (Rplus (Rplus R1 R1) (Rplus R1 R1) )))
+ (Rmult eps (Rinv (Rplus (Rplus R1 R1) (Rplus R1 R1) ))))==
+ (Rmult eps (Rinv (Rplus R1 R1))).
+Intro eps.
+Replace ``2+2`` with ``2*2``.
+Pattern 3 eps; Rewrite double_var.
+Rewrite (Rmult_Rplus_distrl ``eps/2`` ``eps/2`` ``/2``).
+Unfold Rdiv.
+Repeat Rewrite Rmult_assoc.
+Rewrite <- Rinv_Rmult.
+Reflexivity.
+DiscrR.
+DiscrR.
+Ring.
+Qed.
+
+(*********)
+Lemma Rlt_eps2_eps:(eps:R)(Rgt eps R0)->
+ (Rlt (Rmult eps (Rinv (Rplus R1 R1))) eps).
+Intros.
+Pattern 2 eps; Rewrite <- Rmult_1r.
+Repeat Rewrite (Rmult_sym eps).
+Apply Rlt_monotony_r.
+Exact H.
+Apply Rlt_monotony_contra with ``2``.
+Fourier.
+Rewrite Rmult_1r; Rewrite <- Rinv_r_sym.
+Fourier.
+DiscrR.
+Qed.
+
+(*********)
+Lemma Rlt_eps4_eps:(eps:R)(Rgt eps R0)->
+ (Rlt (Rmult eps (Rinv (Rplus (Rplus R1 R1) (Rplus R1 R1)))) eps).
+Intros.
+Replace ``2+2`` with ``4``.
+Pattern 2 eps; Rewrite <- Rmult_1r.
+Repeat Rewrite (Rmult_sym eps).
+Apply Rlt_monotony_r.
+Exact H.
+Apply Rlt_monotony_contra with ``4``.
+Replace ``4`` with ``2*2``.
+Apply Rmult_lt_pos; Fourier.
+Ring.
+Rewrite Rmult_1r; Rewrite <- Rinv_r_sym.
+Fourier.
+DiscrR.
+Ring.
+Qed.
+
+(*********)
+Lemma prop_eps:(r:R)((eps:R)(Rgt eps R0)->(Rlt r eps))->(Rle r R0).
+Intros;Elim (total_order r R0); Intro.
+Apply Rlt_le; Assumption.
+Elim H0; Intro.
+Apply eq_Rle; Assumption.
+Clear H0;Generalize (H r H1); Intro;Generalize (Rlt_antirefl r);
+ Intro;ElimType False; Auto.
+Qed.
+
+(*********)
+Definition mul_factor := [l,l':R](Rinv (Rplus R1 (Rplus (Rabsolu l)
+ (Rabsolu l')))).
+
+(*********)
+Lemma mul_factor_wd : (l,l':R)
+ ~(Rplus R1 (Rplus (Rabsolu l) (Rabsolu l')))==R0.
+Intros;Rewrite (Rplus_sym R1 (Rplus (Rabsolu l) (Rabsolu l')));
+ Apply tech_Rplus.
+Cut (Rle (Rabsolu (Rplus l l')) (Rplus (Rabsolu l) (Rabsolu l'))).
+Cut (Rle R0 (Rabsolu (Rplus l l'))).
+Exact (Rle_trans ? ? ?).
+Exact (Rabsolu_pos (Rplus l l')).
+Exact (Rabsolu_triang ? ?).
+Exact Rlt_R0_R1.
+Qed.
+
+(*********)
+Lemma mul_factor_gt:(eps:R)(l,l':R)(Rgt eps R0)->
+ (Rgt (Rmult eps (mul_factor l l')) R0).
+Intros;Unfold Rgt;Rewrite <- (Rmult_Or eps);Apply Rlt_monotony.
+Assumption.
+Unfold mul_factor;Apply Rlt_Rinv;
+ Cut (Rle R1 (Rplus R1 (Rplus (Rabsolu l) (Rabsolu l')))).
+Cut (Rlt R0 R1).
+Exact (Rlt_le_trans ? ? ?).
+Exact Rlt_R0_R1.
+Replace (Rle R1 (Rplus R1 (Rplus (Rabsolu l) (Rabsolu l'))))
+ with (Rle (Rplus R1 R0) (Rplus R1 (Rplus (Rabsolu l) (Rabsolu l')))).
+Apply Rle_compatibility.
+Cut (Rle (Rabsolu (Rplus l l')) (Rplus (Rabsolu l) (Rabsolu l'))).
+Cut (Rle R0 (Rabsolu (Rplus l l'))).
+Exact (Rle_trans ? ? ?).
+Exact (Rabsolu_pos ?).
+Exact (Rabsolu_triang ? ?).
+Rewrite (proj1 ? ? (Rplus_ne R1));Trivial.
+Qed.
+
+(*********)
+Lemma mul_factor_gt_f:(eps:R)(l,l':R)(Rgt eps R0)->
+ (Rgt (Rmin R1 (Rmult eps (mul_factor l l'))) R0).
+Intros;Apply Rmin_Rgt_r;Split.
+Exact Rlt_R0_R1.
+Exact (mul_factor_gt eps l l' H).
+Qed.
+
+
+(*******************************)
+(* Metric space *)
+(*******************************)
+
+(*********)
+Record Metric_Space:Type:= {
+ Base:Type;
+ dist:Base->Base->R;
+ dist_pos:(x,y:Base)(Rge (dist x y) R0);
+ dist_sym:(x,y:Base)(dist x y)==(dist y x);
+ dist_refl:(x,y:Base)((dist x y)==R0<->x==y);
+ dist_tri:(x,y,z:Base)(Rle (dist x y)
+ (Rplus (dist x z) (dist z y))) }.
+
+(*******************************)
+(* Limit in Metric space *)
+(*******************************)
+
+(*********)
+Definition limit_in:=
+ [X:Metric_Space; X':Metric_Space; f:(Base X)->(Base X');
+ D:(Base X)->Prop; x0:(Base X); l:(Base X')]
+ (eps:R)(Rgt eps R0)->
+ (EXT alp:R | (Rgt alp R0)/\(x:(Base X))(D x)/\
+ (Rlt (dist X x x0) alp)->
+ (Rlt (dist X' (f x) l) eps)).
+
+(*******************************)
+(* R is a metric space *)
+(*******************************)
+
+(*********)
+Definition R_met:Metric_Space:=(Build_Metric_Space R R_dist
+ R_dist_pos R_dist_sym R_dist_refl R_dist_tri).
+
+(*******************************)
+(* Limit 1 arg *)
+(*******************************)
+(*********)
+Definition Dgf:=[Df,Dg:R->Prop][f:R->R][x:R](Df x)/\(Dg (f x)).
+
+(*********)
+Definition limit1_in:(R->R)->(R->Prop)->R->R->Prop:=
+ [f:R->R; D:R->Prop; l:R; x0:R](limit_in R_met R_met f D x0 l).
+
+(*********)
+Lemma tech_limit:(f:R->R)(D:R->Prop)(l:R)(x0:R)(D x0)->
+ (limit1_in f D l x0)->l==(f x0).
+Intros f D l x0 H H0.
+Case (Rabsolu_pos (Rminus (f x0) l)); Intros H1.
+Absurd (Rlt (dist R_met (f x0) l) (dist R_met (f x0) l)).
+Apply Rlt_antirefl.
+Case (H0 (dist R_met (f x0) l)); Auto.
+Intros alpha1 (H2, H3); Apply H3; Auto; Split; Auto.
+Case (dist_refl R_met x0 x0); Intros Hr1 Hr2; Rewrite Hr2; Auto.
+Case (dist_refl R_met (f x0) l); Intros Hr1 Hr2; Apply sym_eqT; Auto.
+Qed.
+
+(*********)
+Lemma tech_limit_contr:(f:R->R)(D:R->Prop)(l:R)(x0:R)(D x0)->~l==(f x0)
+ ->~(limit1_in f D l x0).
+Intros;Generalize (tech_limit f D l x0);Tauto.
+Qed.
+
+(*********)
+Lemma lim_x:(D:R->Prop)(x0:R)(limit1_in [x:R]x D x0 x0).
+Unfold limit1_in; Unfold limit_in; Simpl; Intros;Split with eps;
+ Split; Auto;Intros;Elim H0; Intros; Auto.
+Qed.
+
+(*********)
+Lemma limit_plus:(f,g:R->R)(D:R->Prop)(l,l':R)(x0:R)
+ (limit1_in f D l x0)->(limit1_in g D l' x0)->
+ (limit1_in [x:R](Rplus (f x) (g x)) D (Rplus l l') x0).
+Intros;Unfold limit1_in; Unfold limit_in; Simpl; Intros;
+ Elim (H (Rmult eps (Rinv (Rplus R1 R1))) (eps2_Rgt_R0 eps H1));
+ Elim (H0 (Rmult eps (Rinv (Rplus R1 R1))) (eps2_Rgt_R0 eps H1));
+ Simpl;Clear H H0; Intros; Elim H; Elim H0; Clear H H0; Intros;
+ Split with (Rmin x1 x); Split.
+Exact (Rmin_Rgt_r x1 x R0 (conj ? ? H H2)).
+Intros;Elim H4; Clear H4; Intros;
+ Cut (Rlt (Rplus (R_dist (f x2) l) (R_dist (g x2) l')) eps).
+ Cut (Rle (R_dist (Rplus (f x2) (g x2)) (Rplus l l'))
+ (Rplus (R_dist (f x2) l) (R_dist (g x2) l'))).
+Exact (Rle_lt_trans ? ? ?).
+Exact (R_dist_plus ? ? ? ?).
+Elim (Rmin_Rgt_l x1 x (R_dist x2 x0) H5); Clear H5; Intros.
+Generalize (H3 x2 (conj (D x2) (Rlt (R_dist x2 x0) x) H4 H6));
+ Generalize (H0 x2 (conj (D x2) (Rlt (R_dist x2 x0) x1) H4 H5));
+ Intros;
+ Replace eps
+ with (Rplus (Rmult eps (Rinv (Rplus R1 R1)))
+ (Rmult eps (Rinv (Rplus R1 R1)))).
+Exact (Rplus_lt ? ? ? ? H7 H8).
+Exact (eps2 eps).
+Qed.
+
+(*********)
+Lemma limit_Ropp:(f:R->R)(D:R->Prop)(l:R)(x0:R)
+ (limit1_in f D l x0)->(limit1_in [x:R](Ropp (f x)) D (Ropp l) x0).
+Unfold limit1_in;Unfold limit_in;Simpl;Intros;Elim (H eps H0);Clear H;
+ Intros;Elim H;Clear H;Intros;Split with x;Split;Auto;Intros;
+ Generalize (H1 x1 H2);Clear H1;Intro;Unfold R_dist;Unfold Rminus;
+ Rewrite (Ropp_Ropp l);Rewrite (Rplus_sym (Ropp (f x1)) l);
+ Fold (Rminus l (f x1));Fold (R_dist l (f x1));Rewrite R_dist_sym;
+ Assumption.
+Qed.
+
+(*********)
+Lemma limit_minus:(f,g:R->R)(D:R->Prop)(l,l':R)(x0:R)
+ (limit1_in f D l x0)->(limit1_in g D l' x0)->
+ (limit1_in [x:R](Rminus (f x) (g x)) D (Rminus l l') x0).
+Intros;Unfold Rminus;Generalize (limit_Ropp g D l' x0 H0);Intro;
+ Exact (limit_plus f [x:R](Ropp (g x)) D l (Ropp l') x0 H H1).
+Qed.
+
+(*********)
+Lemma limit_free:(f:R->R)(D:R->Prop)(x:R)(x0:R)
+ (limit1_in [h:R](f x) D (f x) x0).
+Unfold limit1_in;Unfold limit_in;Simpl;Intros;Split with eps;Split;
+ Auto;Intros;Elim (R_dist_refl (f x) (f x));Intros a b;
+ Rewrite (b (refl_eqT R (f x)));Unfold Rgt in H;Assumption.
+Qed.
+
+(*********)
+Lemma limit_mul:(f,g:R->R)(D:R->Prop)(l,l':R)(x0:R)
+ (limit1_in f D l x0)->(limit1_in g D l' x0)->
+ (limit1_in [x:R](Rmult (f x) (g x)) D (Rmult l l') x0).
+Intros;Unfold limit1_in; Unfold limit_in; Simpl; Intros;
+ Elim (H (Rmin R1 (Rmult eps (mul_factor l l')))
+ (mul_factor_gt_f eps l l' H1));
+ Elim (H0 (Rmult eps (mul_factor l l')) (mul_factor_gt eps l l' H1));
+ Clear H H0; Simpl; Intros; Elim H; Elim H0; Clear H H0; Intros;
+ Split with (Rmin x1 x); Split.
+Exact (Rmin_Rgt_r x1 x R0 (conj ? ? H H2)).
+Intros; Elim H4; Clear H4; Intros;Unfold R_dist;
+ Replace (Rminus (Rmult (f x2) (g x2)) (Rmult l l')) with
+ (Rplus (Rmult (f x2) (Rminus (g x2) l')) (Rmult l' (Rminus (f x2) l))).
+Cut (Rlt (Rplus (Rabsolu (Rmult (f x2) (Rminus (g x2) l'))) (Rabsolu (Rmult l'
+ (Rminus (f x2) l)))) eps).
+Cut (Rle (Rabsolu (Rplus (Rmult (f x2) (Rminus (g x2) l')) (Rmult l' (Rminus
+ (f x2) l)))) (Rplus (Rabsolu (Rmult (f x2) (Rminus (g x2) l'))) (Rabsolu
+ (Rmult l' (Rminus (f x2) l))))).
+Exact (Rle_lt_trans ? ? ?).
+Exact (Rabsolu_triang ? ?).
+Rewrite (Rabsolu_mult (f x2) (Rminus (g x2) l'));
+ Rewrite (Rabsolu_mult l' (Rminus (f x2) l));
+ Cut (Rle (Rplus (Rmult (Rplus R1 (Rabsolu l)) (Rmult eps (mul_factor l l')))
+ (Rmult (Rabsolu l') (Rmult eps (mul_factor l l')))) eps).
+Cut (Rlt (Rplus (Rmult (Rabsolu (f x2)) (Rabsolu (Rminus (g x2) l'))) (Rmult
+ (Rabsolu l') (Rabsolu (Rminus (f x2) l)))) (Rplus (Rmult (Rplus R1 (Rabsolu
+ l)) (Rmult eps (mul_factor l l'))) (Rmult (Rabsolu l') (Rmult eps
+ (mul_factor l l'))))).
+Exact (Rlt_le_trans ? ? ?).
+Elim (Rmin_Rgt_l x1 x (R_dist x2 x0) H5); Clear H5; Intros;
+ Generalize (H0 x2 (conj (D x2) (Rlt (R_dist x2 x0) x1) H4 H5));Intro;
+ Generalize (Rmin_Rgt_l ? ? ? H7);Intro;Elim H8;Intros;Clear H0 H8;
+ Apply Rplus_lt_le_lt.
+Apply Rmult_lt_0.
+Apply Rle_sym1.
+Exact (Rabsolu_pos (Rminus (g x2) l')).
+Rewrite (Rplus_sym R1 (Rabsolu l));Unfold Rgt;Apply Rlt_r_plus_R1;
+ Exact (Rabsolu_pos l).
+Unfold R_dist in H9;
+ Apply (Rlt_anti_compatibility (Ropp (Rabsolu l)) (Rabsolu (f x2))
+ (Rplus R1 (Rabsolu l))).
+Rewrite <- (Rplus_assoc (Ropp (Rabsolu l)) R1 (Rabsolu l));
+ Rewrite (Rplus_sym (Ropp (Rabsolu l)) R1);
+ Rewrite (Rplus_assoc R1 (Ropp (Rabsolu l)) (Rabsolu l));
+ Rewrite (Rplus_Ropp_l (Rabsolu l));
+ Rewrite (proj1 ? ? (Rplus_ne R1));
+ Rewrite (Rplus_sym (Ropp (Rabsolu l)) (Rabsolu (f x2)));
+ Generalize H9;
+Cut (Rle (Rminus (Rabsolu (f x2)) (Rabsolu l)) (Rabsolu (Rminus (f x2) l))).
+Exact (Rle_lt_trans ? ? ?).
+Exact (Rabsolu_triang_inv ? ?).
+Generalize (H3 x2 (conj (D x2) (Rlt (R_dist x2 x0) x) H4 H6));Trivial.
+Apply Rle_monotony.
+Exact (Rabsolu_pos l').
+Unfold Rle;Left;Assumption.
+Rewrite (Rmult_sym (Rplus R1 (Rabsolu l)) (Rmult eps (mul_factor l l')));
+ Rewrite (Rmult_sym (Rabsolu l') (Rmult eps (mul_factor l l')));
+ Rewrite <- (Rmult_Rplus_distr
+ (Rmult eps (mul_factor l l'))
+ (Rplus R1 (Rabsolu l))
+ (Rabsolu l'));
+ Rewrite (Rmult_assoc eps (mul_factor l l') (Rplus (Rplus R1 (Rabsolu l))
+ (Rabsolu l')));
+ Rewrite (Rplus_assoc R1 (Rabsolu l) (Rabsolu l'));Unfold mul_factor;
+ Rewrite (Rinv_l (Rplus R1 (Rplus (Rabsolu l) (Rabsolu l')))
+ (mul_factor_wd l l'));
+ Rewrite (proj1 ? ? (Rmult_ne eps));Apply eq_Rle;Trivial.
+Ring.
+Qed.
+
+(*********)
+Definition adhDa:(R->Prop)->R->Prop:=[D:R->Prop][a:R]
+ (alp:R)(Rgt alp R0)->(EXT x:R | (D x)/\(Rlt (R_dist x a) alp)).
+
+(*********)
+Lemma single_limit:(f:R->R)(D:R->Prop)(l:R)(l':R)(x0:R)
+ (adhDa D x0)->(limit1_in f D l x0)->(limit1_in f D l' x0)->l==l'.
+Unfold limit1_in; Unfold limit_in; Intros.
+Cut (eps:R)(Rgt eps R0)->(Rlt (dist R_met l l')
+ (Rmult (Rplus R1 R1) eps)).
+Clear H0 H1;Unfold dist; Unfold R_met; Unfold R_dist;
+ Unfold Rabsolu;Case (case_Rabsolu (Rminus l l')); Intros.
+Cut (eps:R)(Rgt eps R0)->(Rlt (Ropp (Rminus l l')) eps).
+Intro;Generalize (prop_eps (Ropp (Rminus l l')) H1);Intro;
+ Generalize (Rlt_RoppO (Rminus l l') r); Intro;Unfold Rgt in H3;
+ Generalize (Rle_not (Ropp (Rminus l l')) R0 H3); Intro;
+ ElimType False; Auto.
+Intros;Cut (Rgt (Rmult eps (Rinv (Rplus R1 R1))) R0).
+Intro;Generalize (H0 (Rmult eps (Rinv (Rplus R1 R1))) H2);
+ Rewrite (Rmult_sym eps (Rinv (Rplus R1 R1)));
+ Rewrite <- (Rmult_assoc (Rplus R1 R1) (Rinv (Rplus R1 R1)) eps);
+ Rewrite (Rinv_r (Rplus R1 R1)).
+Elim (Rmult_ne eps);Intros a b;Rewrite b;Clear a b;Trivial.
+Apply (imp_not_Req (Rplus R1 R1) R0);Right;Generalize Rlt_R0_R1;Intro;
+ Unfold Rgt;Generalize (Rlt_compatibility R1 R0 R1 H3);Intro;
+ Elim (Rplus_ne R1);Intros a b;Rewrite a in H4;Clear a b;
+ Apply (Rlt_trans R0 R1 (Rplus R1 R1) H3 H4).
+Unfold Rgt;Unfold Rgt in H1;
+ Rewrite (Rmult_sym eps(Rinv (Rplus R1 R1)));
+ Rewrite <-(Rmult_Or (Rinv (Rplus R1 R1)));
+ Apply (Rlt_monotony (Rinv (Rplus R1 R1)) R0 eps);Auto.
+Apply (Rlt_Rinv (Rplus R1 R1));Cut (Rlt R1 (Rplus R1 R1)).
+Intro;Apply (Rlt_trans R0 R1 (Rplus R1 R1) Rlt_R0_R1 H2).
+Generalize (Rlt_compatibility R1 R0 R1 Rlt_R0_R1);Elim (Rplus_ne R1);
+ Intros a b;Rewrite a;Clear a b;Trivial.
+(**)
+Cut (eps:R)(Rgt eps R0)->(Rlt (Rminus l l') eps).
+Intro;Generalize (prop_eps (Rminus l l') H1);Intro;
+ Elim (Rle_le_eq (Rminus l l') R0);Intros a b;Clear b;
+ Apply (Rminus_eq l l');Apply a;Split.
+Assumption.
+Apply (Rle_sym2 R0 (Rminus l l') r).
+Intros;Cut (Rgt (Rmult eps (Rinv (Rplus R1 R1))) R0).
+Intro;Generalize (H0 (Rmult eps (Rinv (Rplus R1 R1))) H2);
+ Rewrite (Rmult_sym eps (Rinv (Rplus R1 R1)));
+ Rewrite <- (Rmult_assoc (Rplus R1 R1) (Rinv (Rplus R1 R1)) eps);
+ Rewrite (Rinv_r (Rplus R1 R1)).
+Elim (Rmult_ne eps);Intros a b;Rewrite b;Clear a b;Trivial.
+Apply (imp_not_Req (Rplus R1 R1) R0);Right;Generalize Rlt_R0_R1;Intro;
+ Unfold Rgt;Generalize (Rlt_compatibility R1 R0 R1 H3);Intro;
+ Elim (Rplus_ne R1);Intros a b;Rewrite a in H4;Clear a b;
+ Apply (Rlt_trans R0 R1 (Rplus R1 R1) H3 H4).
+Unfold Rgt;Unfold Rgt in H1;
+ Rewrite (Rmult_sym eps(Rinv (Rplus R1 R1)));
+ Rewrite <-(Rmult_Or (Rinv (Rplus R1 R1)));
+ Apply (Rlt_monotony (Rinv (Rplus R1 R1)) R0 eps);Auto.
+Apply (Rlt_Rinv (Rplus R1 R1));Cut (Rlt R1 (Rplus R1 R1)).
+Intro;Apply (Rlt_trans R0 R1 (Rplus R1 R1) Rlt_R0_R1 H2).
+Generalize (Rlt_compatibility R1 R0 R1 Rlt_R0_R1);Elim (Rplus_ne R1);
+ Intros a b;Rewrite a;Clear a b;Trivial.
+(**)
+Intros;Unfold adhDa in H;Elim (H0 eps H2);Intros;Elim (H1 eps H2);
+ Intros;Clear H0 H1;Elim H3;Elim H4;Clear H3 H4;Intros;
+ Simpl;Simpl in H1 H4;Generalize (Rmin_Rgt x x1 R0);Intro;Elim H5;
+ Intros;Clear H5;
+ Elim (H (Rmin x x1) (H7 (conj (Rgt x R0) (Rgt x1 R0) H3 H0)));
+ Intros; Elim H5;Intros;Clear H5 H H6 H7;
+ Generalize (Rmin_Rgt x x1 (R_dist x2 x0));Intro;Elim H;
+ Intros;Clear H H6;Unfold Rgt in H5;Elim (H5 H9);Intros;Clear H5 H9;
+ Generalize (H1 x2 (conj (D x2) (Rlt (R_dist x2 x0) x1) H8 H6));
+ Generalize (H4 x2 (conj (D x2) (Rlt (R_dist x2 x0) x) H8 H));
+ Clear H8 H H6 H1 H4 H0 H3;Intros;
+ Generalize (Rplus_lt (R_dist (f x2) l) eps (R_dist (f x2) l') eps
+ H H0); Unfold R_dist;Intros;
+ Rewrite (Rabsolu_minus_sym (f x2) l) in H1;
+ Rewrite (Rmult_sym (Rplus R1 R1) eps);Rewrite (Rmult_Rplus_distr eps R1 R1);
+ Elim (Rmult_ne eps);Intros a b;Rewrite a;Clear a b;
+ Generalize (R_dist_tri l l' (f x2));Unfold R_dist;Intros;
+ Apply (Rle_lt_trans (Rabsolu (Rminus l l'))
+ (Rplus (Rabsolu (Rminus l (f x2))) (Rabsolu (Rminus (f x2) l')))
+ (Rplus eps eps) H3 H1).
+Qed.
+
+(*********)
+Lemma limit_comp:(f,g:R->R)(Df,Dg:R->Prop)(l,l':R)(x0:R)
+ (limit1_in f Df l x0)->(limit1_in g Dg l' l)->
+ (limit1_in [x:R](g (f x)) (Dgf Df Dg f) l' x0).
+Unfold limit1_in limit_in Dgf;Simpl.
+Intros f g Df Dg l l' x0 Hf Hg eps eps_pos.
+Elim (Hg eps eps_pos).
+Intros alpg lg.
+Elim (Hf alpg).
+2: Tauto.
+Intros alpf lf.
+Exists alpf.
+Intuition.
+Qed.
+
+(*********)
+
+Lemma limit_inv : (f:R->R)(D:R->Prop)(l:R)(x0:R) (limit1_in f D l x0)->~(l==R0)->(limit1_in [x:R](Rinv (f x)) D (Rinv l) x0).
+Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Elim (H ``(Rabsolu l)/2``).
+Intros delta1 H2; Elim (H ``eps*((Rsqr l)/2)``).
+Intros delta2 H3; Elim H2; Elim H3; Intros; Exists (Rmin delta1 delta2); Split.
+Unfold Rmin; Case (total_order_Rle delta1 delta2); Intro; Assumption.
+Intro; Generalize (H5 x); Clear H5; Intro H5; Generalize (H7 x); Clear H7; Intro H7; Intro H10; Elim H10; Intros; Cut (D x)/\``(Rabsolu (x-x0))<delta1``.
+Cut (D x)/\``(Rabsolu (x-x0))<delta2``.
+Intros; Generalize (H5 H11); Clear H5; Intro H5; Generalize (H7 H12); Clear H7; Intro H7; Generalize (Rabsolu_triang_inv l (f x)); Intro; Rewrite Rabsolu_minus_sym in H7; Generalize (Rle_lt_trans ``(Rabsolu l)-(Rabsolu (f x))`` ``(Rabsolu (l-(f x)))`` ``(Rabsolu l)/2`` H13 H7); Intro; Generalize (Rlt_compatibility ``(Rabsolu (f x))-(Rabsolu l)/2`` ``(Rabsolu l)-(Rabsolu (f x))`` ``(Rabsolu l)/2`` H14); Replace ``(Rabsolu (f x))-(Rabsolu l)/2+((Rabsolu l)-(Rabsolu (f x)))`` with ``(Rabsolu l)/2``.
+Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Intro; Cut ~``(f x)==0``.
+Intro; Replace ``/(f x)+ -/l`` with ``(l-(f x))*/(l*(f x))``.
+Rewrite Rabsolu_mult; Rewrite Rabsolu_Rinv.
+Cut ``/(Rabsolu (l*(f x)))<2/(Rsqr l)``.
+Intro; Rewrite Rabsolu_minus_sym in H5; Cut ``0<=/(Rabsolu (l*(f x)))``.
+Intro; Generalize (Rmult_lt2 ``(Rabsolu (l-(f x)))`` ``eps*(Rsqr l)/2`` ``/(Rabsolu (l*(f x)))`` ``2/(Rsqr l)`` (Rabsolu_pos ``l-(f x)``) H18 H5 H17); Replace ``eps*(Rsqr l)/2*2/(Rsqr l)`` with ``eps``.
+Intro; Assumption.
+Unfold Rdiv; Unfold Rsqr; Rewrite Rinv_Rmult.
+Repeat Rewrite Rmult_assoc.
+Rewrite (Rmult_sym l).
+Repeat Rewrite Rmult_assoc.
+Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r.
+Rewrite (Rmult_sym l).
+Repeat Rewrite Rmult_assoc.
+Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r.
+Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r; Reflexivity.
+DiscrR.
+Exact H0.
+Exact H0.
+Exact H0.
+Exact H0.
+Left; Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Apply prod_neq_R0; Assumption.
+Rewrite Rmult_sym; Rewrite Rabsolu_mult; Rewrite Rinv_Rmult.
+Rewrite (Rsqr_abs l); Unfold Rsqr; Unfold Rdiv; Rewrite Rinv_Rmult.
+Repeat Rewrite <- Rmult_assoc; Apply Rlt_monotony_r.
+Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption.
+Apply Rlt_monotony_contra with ``(Rabsolu (f x))*(Rabsolu l)*/2``.
+Repeat Apply Rmult_lt_pos.
+Apply Rabsolu_pos_lt; Assumption.
+Apply Rabsolu_pos_lt; Assumption.
+Apply Rlt_Rinv; Cut ~(O=(2)); [Intro H17; Generalize (lt_INR_0 (2) (neq_O_lt (2) H17)); Unfold INR; Intro H18; Assumption | Discriminate].
+Replace ``(Rabsolu (f x))*(Rabsolu l)*/2*/(Rabsolu (f x))`` with ``(Rabsolu l)/2``.
+Replace ``(Rabsolu (f x))*(Rabsolu l)*/2*(2*/(Rabsolu l))`` with ``(Rabsolu (f x))``.
+Assumption.
+Repeat Rewrite Rmult_assoc.
+Rewrite (Rmult_sym (Rabsolu l)).
+Repeat Rewrite Rmult_assoc.
+Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r.
+Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r; Reflexivity.
+DiscrR.
+Apply Rabsolu_no_R0.
+Assumption.
+Unfold Rdiv.
+Repeat Rewrite Rmult_assoc.
+Rewrite (Rmult_sym (Rabsolu (f x))).
+Repeat Rewrite Rmult_assoc.
+Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r.
+Reflexivity.
+Apply Rabsolu_no_R0; Assumption.
+Apply Rabsolu_no_R0; Assumption.
+Apply Rabsolu_no_R0; Assumption.
+Apply Rabsolu_no_R0; Assumption.
+Apply Rabsolu_no_R0; Assumption.
+Apply prod_neq_R0; Assumption.
+Rewrite (Rinv_Rmult ? ? H0 H16).
+Unfold Rminus; Rewrite Rmult_Rplus_distrl.
+Rewrite <- Rmult_assoc.
+Rewrite <- Rinv_r_sym.
+Rewrite Rmult_1l.
+Rewrite Ropp_mul1.
+Rewrite (Rmult_sym (f x)).
+Rewrite Rmult_assoc.
+Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r.
+Reflexivity.
+Assumption.
+Assumption.
+Red; Intro; Rewrite H16 in H15; Rewrite Rabsolu_R0 in H15; Cut ``0<(Rabsolu l)/2``.
+Intro; Elim (Rlt_antirefl ``0`` (Rlt_trans ``0`` ``(Rabsolu l)/2`` ``0`` H17 H15)).
+Unfold Rdiv; Apply Rmult_lt_pos.
+Apply Rabsolu_pos_lt; Assumption.
+Apply Rlt_Rinv; Cut ~(O=(2)); [Intro H17; Generalize (lt_INR_0 (2) (neq_O_lt (2) H17)); Unfold INR; Intro; Assumption | Discriminate].
+Pattern 3 (Rabsolu l); Rewrite double_var.
+Ring.
+Split; [Assumption | Apply Rlt_le_trans with (Rmin delta1 delta2); [Assumption | Apply Rmin_r]].
+Split; [Assumption | Apply Rlt_le_trans with (Rmin delta1 delta2); [Assumption | Apply Rmin_l]].
+Change ``0<eps*(Rsqr l)/2``; Unfold Rdiv; Repeat Rewrite Rmult_assoc; Repeat Apply Rmult_lt_pos.
+Assumption.
+Apply Rsqr_pos_lt; Assumption.
+Apply Rlt_Rinv; Cut ~(O=(2)); [Intro H3; Generalize (lt_INR_0 (2) (neq_O_lt (2) H3)); Unfold INR; Intro; Assumption | Discriminate].
+Change ``0<(Rabsolu l)/2``; Unfold Rdiv; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Cut ~(O=(2)); [Intro H3; Generalize (lt_INR_0 (2) (neq_O_lt (2) H3)); Unfold INR; Intro; Assumption | Discriminate]].
+Qed.