summaryrefslogtreecommitdiff
path: root/theories7/Reals/Rbasic_fun.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Rbasic_fun.v')
-rw-r--r--theories7/Reals/Rbasic_fun.v476
1 files changed, 476 insertions, 0 deletions
diff --git a/theories7/Reals/Rbasic_fun.v b/theories7/Reals/Rbasic_fun.v
new file mode 100644
index 00000000..3d143e34
--- /dev/null
+++ b/theories7/Reals/Rbasic_fun.v
@@ -0,0 +1,476 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Rbasic_fun.v,v 1.1.2.1 2004/07/16 19:31:34 herbelin Exp $ i*)
+
+(*********************************************************)
+(** Complements for the real numbers *)
+(* *)
+(*********************************************************)
+
+Require Rbase.
+Require R_Ifp.
+Require Fourier.
+V7only [Import R_scope.]. Open Local Scope R_scope.
+
+Implicit Variable Type r:R.
+
+(*******************************)
+(** Rmin *)
+(*******************************)
+
+(*********)
+Definition Rmin :R->R->R:=[x,y:R]
+ Cases (total_order_Rle x y) of
+ (leftT _) => x
+ | (rightT _) => y
+ end.
+
+(*********)
+Lemma Rmin_Rgt_l:(r1,r2,r:R)(Rgt (Rmin r1 r2) r) ->
+ ((Rgt r1 r)/\(Rgt r2 r)).
+Intros r1 r2 r;Unfold Rmin;Case (total_order_Rle r1 r2);Intros.
+Split.
+Assumption.
+Unfold Rgt;Unfold Rgt in H;Exact (Rlt_le_trans r r1 r2 H r0).
+Split.
+Generalize (not_Rle r1 r2 n);Intro;Exact (Rgt_trans r1 r2 r H0 H).
+Assumption.
+Qed.
+
+(*********)
+Lemma Rmin_Rgt_r:(r1,r2,r:R)(((Rgt r1 r)/\(Rgt r2 r)) ->
+ (Rgt (Rmin r1 r2) r)).
+Intros;Unfold Rmin;Case (total_order_Rle r1 r2);Elim H;Clear H;Intros;
+ Assumption.
+Qed.
+
+(*********)
+Lemma Rmin_Rgt:(r1,r2,r:R)(Rgt (Rmin r1 r2) r)<->
+ ((Rgt r1 r)/\(Rgt r2 r)).
+Intros; Split.
+Exact (Rmin_Rgt_l r1 r2 r).
+Exact (Rmin_Rgt_r r1 r2 r).
+Qed.
+
+(*********)
+Lemma Rmin_l : (x,y:R) ``(Rmin x y)<=x``.
+Intros; Unfold Rmin; Case (total_order_Rle x y); Intro H1; [Right; Reflexivity | Auto with real].
+Qed.
+
+(*********)
+Lemma Rmin_r : (x,y:R) ``(Rmin x y)<=y``.
+Intros; Unfold Rmin; Case (total_order_Rle x y); Intro H1; [Assumption | Auto with real].
+Qed.
+
+(*********)
+Lemma Rmin_sym : (a,b:R) (Rmin a b)==(Rmin b a).
+Intros; Unfold Rmin; Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; Try Reflexivity Orelse (Apply Rle_antisym; Assumption Orelse Auto with real).
+Qed.
+
+(*********)
+Lemma Rmin_stable_in_posreal : (x,y:posreal) ``0<(Rmin x y)``.
+Intros; Apply Rmin_Rgt_r; Split; [Apply (cond_pos x) | Apply (cond_pos y)].
+Qed.
+
+(*******************************)
+(** Rmax *)
+(*******************************)
+
+(*********)
+Definition Rmax :R->R->R:=[x,y:R]
+ Cases (total_order_Rle x y) of
+ (leftT _) => y
+ | (rightT _) => x
+ end.
+
+(*********)
+Lemma Rmax_Rle:(r1,r2,r:R)(Rle r (Rmax r1 r2))<->
+ ((Rle r r1)\/(Rle r r2)).
+Intros;Split.
+Unfold Rmax;Case (total_order_Rle r1 r2);Intros;Auto.
+Intro;Unfold Rmax;Case (total_order_Rle r1 r2);Elim H;Clear H;Intros;Auto.
+Apply (Rle_trans r r1 r2);Auto.
+Generalize (not_Rle r1 r2 n);Clear n;Intro;Unfold Rgt in H0;
+ Apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)).
+Qed.
+
+Lemma RmaxLess1: (r1, r2 : R) (Rle r1 (Rmax r1 r2)).
+Intros r1 r2; Unfold Rmax; Case (total_order_Rle r1 r2); Auto with real.
+Qed.
+
+Lemma RmaxLess2: (r1, r2 : R) (Rle r2 (Rmax r1 r2)).
+Intros r1 r2; Unfold Rmax; Case (total_order_Rle r1 r2); Auto with real.
+Qed.
+
+Lemma RmaxSym: (p, q : R) (Rmax p q) == (Rmax q p).
+Intros p q; Unfold Rmax;
+ Case (total_order_Rle p q); Case (total_order_Rle q p); Auto; Intros H1 H2;
+ Apply Rle_antisym; Auto with real.
+Qed.
+
+Lemma RmaxRmult:
+ (p, q, r : R)
+ (Rle R0 r) -> (Rmax (Rmult r p) (Rmult r q)) == (Rmult r (Rmax p q)).
+Intros p q r H; Unfold Rmax.
+Case (total_order_Rle p q); Case (total_order_Rle (Rmult r p) (Rmult r q));
+ Auto; Intros H1 H2; Auto.
+Case H; Intros E1.
+Case H1; Auto with real.
+Rewrite <- E1; Repeat Rewrite Rmult_Ol; Auto.
+Case H; Intros E1.
+Case H2; Auto with real.
+Apply Rle_monotony_contra with z := r; Auto.
+Rewrite <- E1; Repeat Rewrite Rmult_Ol; Auto.
+Qed.
+
+Lemma Rmax_stable_in_negreal : (x,y:negreal) ``(Rmax x y)<0``.
+Intros; Unfold Rmax; Case (total_order_Rle x y); Intro; [Apply (cond_neg y) | Apply (cond_neg x)].
+Qed.
+
+(*******************************)
+(** Rabsolu *)
+(*******************************)
+
+(*********)
+Lemma case_Rabsolu:(r:R)(sumboolT (Rlt r R0) (Rge r R0)).
+Intro;Generalize (total_order_Rle R0 r);Intro X;Elim X;Intro;Clear X.
+Right;Apply (Rle_sym1 R0 r a).
+Left;Fold (Rgt R0 r);Apply (not_Rle R0 r b).
+Qed.
+
+(*********)
+Definition Rabsolu:R->R:=
+ [r:R](Cases (case_Rabsolu r) of
+ (leftT _) => (Ropp r)
+ |(rightT _) => r
+ end).
+
+(*********)
+Lemma Rabsolu_R0:(Rabsolu R0)==R0.
+Unfold Rabsolu;Case (case_Rabsolu R0);Auto;Intro.
+Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto.
+Qed.
+
+Lemma Rabsolu_R1: (Rabsolu R1)==R1.
+Unfold Rabsolu; Case (case_Rabsolu R1); Auto with real.
+Intros H; Absurd ``1 < 0``;Auto with real.
+Qed.
+
+(*********)
+Lemma Rabsolu_no_R0:(r:R)~r==R0->~(Rabsolu r)==R0.
+Intros;Unfold Rabsolu;Case (case_Rabsolu r);Intro;Auto.
+Apply Ropp_neq;Auto.
+Qed.
+
+(*********)
+Lemma Rabsolu_left: (r:R)(Rlt r R0)->((Rabsolu r) == (Ropp r)).
+Intros;Unfold Rabsolu;Case (case_Rabsolu r);Trivial;Intro;Absurd (Rge r R0).
+Exact (Rlt_ge_not r R0 H).
+Assumption.
+Qed.
+
+(*********)
+Lemma Rabsolu_right: (r:R)(Rge r R0)->((Rabsolu r) == r).
+Intros;Unfold Rabsolu;Case (case_Rabsolu r);Intro.
+Absurd (Rge r R0).
+Exact (Rlt_ge_not r R0 r0).
+Assumption.
+Trivial.
+Qed.
+
+Lemma Rabsolu_left1: (a : R) (Rle a R0) -> (Rabsolu a) == (Ropp a).
+Intros a H; Case H; Intros H1.
+Apply Rabsolu_left; Auto.
+Rewrite H1; Simpl; Rewrite Rabsolu_right; Auto with real.
+Qed.
+
+(*********)
+Lemma Rabsolu_pos:(x:R)(Rle R0 (Rabsolu x)).
+Intros;Unfold Rabsolu;Case (case_Rabsolu x);Intro.
+Generalize (Rlt_Ropp x R0 r);Intro;Unfold Rgt in H;
+ Rewrite Ropp_O in H;Unfold Rle;Left;Assumption.
+Apply Rle_sym2;Assumption.
+Qed.
+
+Lemma Rle_Rabsolu:
+ (x:R) (Rle x (Rabsolu x)).
+Intro; Unfold Rabsolu;Case (case_Rabsolu x);Intros;Fourier.
+Qed.
+
+(*********)
+Lemma Rabsolu_pos_eq:(x:R)(Rle R0 x)->(Rabsolu x)==x.
+Intros;Unfold Rabsolu;Case (case_Rabsolu x);Intro;
+ [Generalize (Rle_not R0 x r);Intro;ElimType False;Auto|Trivial].
+Qed.
+
+(*********)
+Lemma Rabsolu_Rabsolu:(x:R)(Rabsolu (Rabsolu x))==(Rabsolu x).
+Intro;Apply (Rabsolu_pos_eq (Rabsolu x) (Rabsolu_pos x)).
+Qed.
+
+(*********)
+Lemma Rabsolu_pos_lt:(x:R)(~x==R0)->(Rlt R0 (Rabsolu x)).
+Intros;Generalize (Rabsolu_pos x);Intro;Unfold Rle in H0;
+ Elim H0;Intro;Auto.
+ElimType False;Clear H0;Elim H;Clear H;Generalize H1;
+ Unfold Rabsolu;Case (case_Rabsolu x);Intros;Auto.
+Clear r H1; Generalize (Rplus_plus_r x R0 (Ropp x) H0);
+ Rewrite (let (H1,H2)=(Rplus_ne x) in H1);Rewrite (Rplus_Ropp_r x);Trivial.
+Qed.
+
+(*********)
+Lemma Rabsolu_minus_sym:(x,y:R)
+ (Rabsolu (Rminus x y))==(Rabsolu (Rminus y x)).
+Intros;Unfold Rabsolu;Case (case_Rabsolu (Rminus x y));
+ Case (case_Rabsolu (Rminus y x));Intros.
+ Generalize (Rminus_lt y x r);Generalize (Rminus_lt x y r0);Intros;
+ Generalize (Rlt_antisym x y H);Intro;ElimType False;Auto.
+Rewrite (Ropp_distr2 x y);Trivial.
+Rewrite (Ropp_distr2 y x);Trivial.
+Unfold Rge in r r0;Elim r;Elim r0;Intros;Clear r r0.
+Generalize (Rgt_RoppO (Rminus x y) H);Rewrite (Ropp_distr2 x y);
+ Intro;Unfold Rgt in H0;Generalize (Rlt_antisym R0 (Rminus y x) H0);
+ Intro;ElimType False;Auto.
+Rewrite (Rminus_eq x y H);Trivial.
+Rewrite (Rminus_eq y x H0);Trivial.
+Rewrite (Rminus_eq y x H0);Trivial.
+Qed.
+
+(*********)
+Lemma Rabsolu_mult:(x,y:R)
+ (Rabsolu (Rmult x y))==(Rmult (Rabsolu x) (Rabsolu y)).
+Intros;Unfold Rabsolu;Case (case_Rabsolu (Rmult x y));
+ Case (case_Rabsolu x);Case (case_Rabsolu y);Intros;Auto.
+Generalize (Rlt_anti_monotony y x R0 r r0);Intro;
+ Rewrite (Rmult_Or y) in H;Generalize (Rlt_antisym (Rmult x y) R0 r1);
+ Intro;Unfold Rgt in H;ElimType False;Rewrite (Rmult_sym y x) in H;
+ Auto.
+Rewrite (Ropp_mul1 x y);Trivial.
+Rewrite (Rmult_sym x (Ropp y));Rewrite (Ropp_mul1 y x);
+ Rewrite (Rmult_sym x y);Trivial.
+Unfold Rge in r r0;Elim r;Elim r0;Clear r r0;Intros;Unfold Rgt in H H0.
+Generalize (Rlt_monotony x R0 y H H0);Intro;Rewrite (Rmult_Or x) in H1;
+ Generalize (Rlt_antisym (Rmult x y) R0 r1);Intro;ElimType False;Auto.
+Rewrite H in r1;Rewrite (Rmult_Ol y) in r1;Generalize (Rlt_antirefl R0);
+ Intro;ElimType False;Auto.
+Rewrite H0 in r1;Rewrite (Rmult_Or x) in r1;Generalize (Rlt_antirefl R0);
+ Intro;ElimType False;Auto.
+Rewrite H0 in r1;Rewrite (Rmult_Or x) in r1;Generalize (Rlt_antirefl R0);
+ Intro;ElimType False;Auto.
+Rewrite (Ropp_mul2 x y);Trivial.
+Unfold Rge in r r1;Elim r;Elim r1;Clear r r1;Intros;Unfold Rgt in H0 H.
+Generalize (Rlt_monotony y x R0 H0 r0);Intro;Rewrite (Rmult_Or y) in H1;
+ Rewrite (Rmult_sym y x) in H1;
+ Generalize (Rlt_antisym (Rmult x y) R0 H1);Intro;ElimType False;Auto.
+Generalize (imp_not_Req x R0 (or_introl (Rlt x R0) (Rgt x R0) r0));
+ Generalize (imp_not_Req y R0 (or_intror (Rlt y R0) (Rgt y R0) H0));Intros;
+ Generalize (without_div_Od x y H);Intro;Elim H3;Intro;ElimType False;
+ Auto.
+Rewrite H0 in H;Rewrite (Rmult_Or x) in H;Unfold Rgt in H;
+ Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto.
+Rewrite H0;Rewrite (Rmult_Or x);Rewrite (Rmult_Or (Ropp x));Trivial.
+Unfold Rge in r0 r1;Elim r0;Elim r1;Clear r0 r1;Intros;Unfold Rgt in H0 H.
+Generalize (Rlt_monotony x y R0 H0 r);Intro;Rewrite (Rmult_Or x) in H1;
+ Generalize (Rlt_antisym (Rmult x y) R0 H1);Intro;ElimType False;Auto.
+Generalize (imp_not_Req y R0 (or_introl (Rlt y R0) (Rgt y R0) r));
+ Generalize (imp_not_Req R0 x (or_introl (Rlt R0 x) (Rgt R0 x) H0));Intros;
+ Generalize (without_div_Od x y H);Intro;Elim H3;Intro;ElimType False;
+ Auto.
+Rewrite H0 in H;Rewrite (Rmult_Ol y) in H;Unfold Rgt in H;
+ Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto.
+Rewrite H0;Rewrite (Rmult_Ol y);Rewrite (Rmult_Ol (Ropp y));Trivial.
+Qed.
+
+(*********)
+Lemma Rabsolu_Rinv:(r:R)(~r==R0)->(Rabsolu (Rinv r))==
+ (Rinv (Rabsolu r)).
+Intro;Unfold Rabsolu;Case (case_Rabsolu r);
+ Case (case_Rabsolu (Rinv r));Auto;Intros.
+Apply Ropp_Rinv;Auto.
+Generalize (Rlt_Rinv2 r r1);Intro;Unfold Rge in r0;Elim r0;Intros.
+Unfold Rgt in H1;Generalize (Rlt_antisym R0 (Rinv r) H1);Intro;
+ ElimType False;Auto.
+Generalize
+ (imp_not_Req (Rinv r) R0
+ (or_introl (Rlt (Rinv r) R0) (Rgt (Rinv r) R0) H0));Intro;
+ ElimType False;Auto.
+Unfold Rge in r1;Elim r1;Clear r1;Intro.
+Unfold Rgt in H0;Generalize (Rlt_antisym R0 (Rinv r)
+ (Rlt_Rinv r H0));Intro;ElimType False;Auto.
+ElimType False;Auto.
+Qed.
+
+Lemma Rabsolu_Ropp:
+ (x:R) (Rabsolu (Ropp x))==(Rabsolu x).
+Intro;Cut (Ropp x)==(Rmult (Ropp R1) x).
+Intros; Rewrite H.
+Rewrite Rabsolu_mult.
+Cut (Rabsolu (Ropp R1))==R1.
+Intros; Rewrite H0.
+Ring.
+Unfold Rabsolu; Case (case_Rabsolu (Ropp R1)).
+Intro; Ring.
+Intro H0;Generalize (Rle_sym2 R0 (Ropp R1) H0);Intros.
+Generalize (Rle_Ropp R0 (Ropp R1) H1).
+Rewrite Ropp_Ropp; Rewrite Ropp_O.
+Intro;Generalize (Rle_not R1 R0 Rlt_R0_R1);Intro;
+ Generalize (Rle_sym2 R1 R0 H2);Intro;
+ ElimType False;Auto.
+Ring.
+Qed.
+
+(*********)
+Lemma Rabsolu_triang:(a,b:R)(Rle (Rabsolu (Rplus a b))
+ (Rplus (Rabsolu a) (Rabsolu b))).
+Intros a b;Unfold Rabsolu;Case (case_Rabsolu (Rplus a b));
+ Case (case_Rabsolu a);Case (case_Rabsolu b);Intros.
+Apply (eq_Rle (Ropp (Rplus a b)) (Rplus (Ropp a) (Ropp b)));
+ Rewrite (Ropp_distr1 a b);Reflexivity.
+(**)
+Rewrite (Ropp_distr1 a b);
+ Apply (Rle_compatibility (Ropp a) (Ropp b) b);
+ Unfold Rle;Unfold Rge in r;Elim r;Intro.
+Left;Unfold Rgt in H;Generalize (Rlt_compatibility (Ropp b) R0 b H);
+ Intro;Elim (Rplus_ne (Ropp b));Intros v w;Rewrite v in H0;Clear v w;
+ Rewrite (Rplus_Ropp_l b) in H0;Apply (Rlt_trans (Ropp b) R0 b H0 H).
+Right;Rewrite H;Apply Ropp_O.
+(**)
+Rewrite (Ropp_distr1 a b);
+ Rewrite (Rplus_sym (Ropp a) (Ropp b));
+ Rewrite (Rplus_sym a (Ropp b));
+ Apply (Rle_compatibility (Ropp b) (Ropp a) a);
+ Unfold Rle;Unfold Rge in r0;Elim r0;Intro.
+Left;Unfold Rgt in H;Generalize (Rlt_compatibility (Ropp a) R0 a H);
+ Intro;Elim (Rplus_ne (Ropp a));Intros v w;Rewrite v in H0;Clear v w;
+ Rewrite (Rplus_Ropp_l a) in H0;Apply (Rlt_trans (Ropp a) R0 a H0 H).
+Right;Rewrite H;Apply Ropp_O.
+(**)
+ElimType False;Generalize (Rge_plus_plus_r a b R0 r);Intro;
+ Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w;
+ Generalize (Rge_trans (Rplus a b) a R0 H r0);Intro;Clear H;
+ Unfold Rge in H0;Elim H0;Intro;Clear H0.
+Unfold Rgt in H;Generalize (Rlt_antisym (Rplus a b) R0 r1);Intro;Auto.
+Absurd (Rplus a b)==R0;Auto.
+Apply (imp_not_Req (Rplus a b) R0);Left;Assumption.
+(**)
+ElimType False;Generalize (Rlt_compatibility a b R0 r);Intro;
+ Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w;
+ Generalize (Rlt_trans (Rplus a b) a R0 H r0);Intro;Clear H;
+ Unfold Rge in r1;Elim r1;Clear r1;Intro.
+Unfold Rgt in H;
+ Generalize (Rlt_trans (Rplus a b) R0 (Rplus a b) H0 H);Intro;
+ Apply (Rlt_antirefl (Rplus a b));Assumption.
+Rewrite H in H0;Apply (Rlt_antirefl R0);Assumption.
+(**)
+Rewrite (Rplus_sym a b);Rewrite (Rplus_sym (Ropp a) b);
+ Apply (Rle_compatibility b a (Ropp a));
+ Apply (Rminus_le a (Ropp a));Unfold Rminus;Rewrite (Ropp_Ropp a);
+ Generalize (Rlt_compatibility a a R0 r0);Clear r r1;Intro;
+ Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w;
+ Generalize (Rlt_trans (Rplus a a) a R0 H r0);Intro;
+ Apply (Rlt_le (Rplus a a) R0 H0).
+(**)
+Apply (Rle_compatibility a b (Ropp b));
+ Apply (Rminus_le b (Ropp b));Unfold Rminus;Rewrite (Ropp_Ropp b);
+ Generalize (Rlt_compatibility b b R0 r);Clear r0 r1;Intro;
+ Elim (Rplus_ne b);Intros v w;Rewrite v in H;Clear v w;
+ Generalize (Rlt_trans (Rplus b b) b R0 H r);Intro;
+ Apply (Rlt_le (Rplus b b) R0 H0).
+(**)
+Unfold Rle;Right;Reflexivity.
+Qed.
+
+(*********)
+Lemma Rabsolu_triang_inv:(a,b:R)(Rle (Rminus (Rabsolu a) (Rabsolu b))
+ (Rabsolu (Rminus a b))).
+Intros;
+ Apply (Rle_anti_compatibility (Rabsolu b)
+ (Rminus (Rabsolu a) (Rabsolu b)) (Rabsolu (Rminus a b)));
+ Unfold Rminus;
+ Rewrite <- (Rplus_assoc (Rabsolu b) (Rabsolu a) (Ropp (Rabsolu b)));
+ Rewrite (Rplus_sym (Rabsolu b) (Rabsolu a));
+ Rewrite (Rplus_assoc (Rabsolu a) (Rabsolu b) (Ropp (Rabsolu b)));
+ Rewrite (Rplus_Ropp_r (Rabsolu b));
+ Rewrite (proj1 ? ? (Rplus_ne (Rabsolu a)));
+ Replace (Rabsolu a) with (Rabsolu (Rplus a R0)).
+ Rewrite <- (Rplus_Ropp_r b);
+ Rewrite <- (Rplus_assoc a b (Ropp b));
+ Rewrite (Rplus_sym a b);
+ Rewrite (Rplus_assoc b a (Ropp b)).
+ Exact (Rabsolu_triang b (Rplus a (Ropp b))).
+ Rewrite (proj1 ? ? (Rplus_ne a));Trivial.
+Qed.
+
+(* ||a|-|b||<=|a-b| *)
+Lemma Rabsolu_triang_inv2 : (a,b:R) ``(Rabsolu ((Rabsolu a)-(Rabsolu b)))<=(Rabsolu (a-b))``.
+Cut (a,b:R) ``(Rabsolu b)<=(Rabsolu a)``->``(Rabsolu ((Rabsolu a)-(Rabsolu b))) <= (Rabsolu (a-b))``.
+Intros; NewDestruct (total_order (Rabsolu a) (Rabsolu b)) as [Hlt|[Heq|Hgt]].
+Rewrite <- (Rabsolu_Ropp ``(Rabsolu a)-(Rabsolu b)``); Rewrite <- (Rabsolu_Ropp ``a-b``); Do 2 Rewrite Ropp_distr2.
+Apply H; Left; Assumption.
+Rewrite Heq; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos.
+Apply H; Left; Assumption.
+Intros; Replace ``(Rabsolu ((Rabsolu a)-(Rabsolu b)))`` with ``(Rabsolu a)-(Rabsolu b)``.
+Apply Rabsolu_triang_inv.
+Rewrite (Rabsolu_right ``(Rabsolu a)-(Rabsolu b)``); [Reflexivity | Apply Rle_sym1; Apply Rle_anti_compatibility with (Rabsolu b); Rewrite Rplus_Or; Replace ``(Rabsolu b)+((Rabsolu a)-(Rabsolu b))`` with (Rabsolu a); [Assumption | Ring]].
+Qed.
+
+(*********)
+Lemma Rabsolu_def1:(x,a:R)(Rlt x a)->(Rlt (Ropp a) x)->(Rlt (Rabsolu x) a).
+Unfold Rabsolu;Intros;Case (case_Rabsolu x);Intro.
+Generalize (Rlt_Ropp (Ropp a) x H0);Unfold Rgt;Rewrite Ropp_Ropp;Intro;
+ Assumption.
+Assumption.
+Qed.
+
+(*********)
+Lemma Rabsolu_def2:(x,a:R)(Rlt (Rabsolu x) a)->(Rlt x a)/\(Rlt (Ropp a) x).
+Unfold Rabsolu;Intro x;Case (case_Rabsolu x);Intros.
+Generalize (Rlt_RoppO x r);Unfold Rgt;Intro;
+ Generalize (Rlt_trans R0 (Ropp x) a H0 H);Intro;Split.
+Apply (Rlt_trans x R0 a r H1).
+Generalize (Rlt_Ropp (Ropp x) a H);Rewrite (Ropp_Ropp x);Unfold Rgt;Trivial.
+Fold (Rgt a x) in H;Generalize (Rgt_ge_trans a x R0 H r);Intro;
+ Generalize (Rgt_RoppO a H0);Intro;Fold (Rgt R0 (Ropp a));
+ Generalize (Rge_gt_trans x R0 (Ropp a) r H1);Unfold Rgt;Intro;Split;
+ Assumption.
+Qed.
+
+Lemma RmaxAbs:
+ (p, q, r : R)
+ (Rle p q) -> (Rle q r) -> (Rle (Rabsolu q) (Rmax (Rabsolu p) (Rabsolu r))).
+Intros p q r H' H'0; Case (Rle_or_lt R0 p); Intros H'1.
+Repeat Rewrite Rabsolu_right; Auto with real.
+Apply Rle_trans with r; Auto with real.
+Apply RmaxLess2; Auto.
+Apply Rge_trans with p; Auto with real; Apply Rge_trans with q; Auto with real.
+Apply Rge_trans with p; Auto with real.
+Rewrite (Rabsolu_left p); Auto.
+Case (Rle_or_lt R0 q); Intros H'2.
+Repeat Rewrite Rabsolu_right; Auto with real.
+Apply Rle_trans with r; Auto.
+Apply RmaxLess2; Auto.
+Apply Rge_trans with q; Auto with real.
+Rewrite (Rabsolu_left q); Auto.
+Case (Rle_or_lt R0 r); Intros H'3.
+Repeat Rewrite Rabsolu_right; Auto with real.
+Apply Rle_trans with (Ropp p); Auto with real.
+Apply RmaxLess1; Auto.
+Rewrite (Rabsolu_left r); Auto.
+Apply Rle_trans with (Ropp p); Auto with real.
+Apply RmaxLess1; Auto.
+Qed.
+
+Lemma Rabsolu_Zabs: (z : Z) (Rabsolu (IZR z)) == (IZR (Zabs z)).
+Intros z; Case z; Simpl; Auto with real.
+Apply Rabsolu_right; Auto with real.
+Intros p0; Apply Rabsolu_right; Auto with real zarith.
+Intros p0; Rewrite Rabsolu_Ropp.
+Apply Rabsolu_right; Auto with real zarith.
+Qed.
+