summaryrefslogtreecommitdiff
path: root/theories7/Reals/RIneq.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/RIneq.v')
-rw-r--r--theories7/Reals/RIneq.v1631
1 files changed, 1631 insertions, 0 deletions
diff --git a/theories7/Reals/RIneq.v b/theories7/Reals/RIneq.v
new file mode 100644
index 00000000..00d41c70
--- /dev/null
+++ b/theories7/Reals/RIneq.v
@@ -0,0 +1,1631 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: RIneq.v,v 1.2.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
+
+(***************************************************************************)
+(** Basic lemmas for the classical reals numbers *)
+(***************************************************************************)
+
+Require Export Raxioms.
+Require Export ZArithRing.
+Require Omega.
+Require Export Field.
+
+Open Local Scope Z_scope.
+Open Local Scope R_scope.
+
+Implicit Variable Type r:R.
+
+(***************************************************************************)
+(** Instantiating Ring tactic on reals *)
+(***************************************************************************)
+
+Lemma RTheory : (Ring_Theory Rplus Rmult R1 R0 Ropp [x,y:R]false).
+ Split.
+ Exact Rplus_sym.
+ Symmetry; Apply Rplus_assoc.
+ Exact Rmult_sym.
+ Symmetry; Apply Rmult_assoc.
+ Intro; Apply Rplus_Ol.
+ Intro; Apply Rmult_1l.
+ Exact Rplus_Ropp_r.
+ Intros.
+ Rewrite Rmult_sym.
+ Rewrite (Rmult_sym n p).
+ Rewrite (Rmult_sym m p).
+ Apply Rmult_Rplus_distr.
+ Intros; Contradiction.
+Defined.
+
+Add Field R Rplus Rmult R1 R0 Ropp [x,y:R]false Rinv RTheory Rinv_l
+ with minus:=Rminus div:=Rdiv.
+
+(**************************************************************************)
+(** Relation between orders and equality *)
+(**************************************************************************)
+
+(**********)
+Lemma Rlt_antirefl:(r:R)~``r<r``.
+ Generalize Rlt_antisym. Intuition EAuto.
+Qed.
+Hints Resolve Rlt_antirefl : real.
+
+Lemma Rle_refl : (x:R) ``x<=x``.
+Intro; Right; Reflexivity.
+Qed.
+
+Lemma Rlt_not_eq:(r1,r2:R)``r1<r2``->``r1<>r2``.
+ Red; Intros r1 r2 H H0; Apply (Rlt_antirefl r1).
+ Pattern 2 r1; Rewrite H0; Trivial.
+Qed.
+
+Lemma Rgt_not_eq:(r1,r2:R)``r1>r2``->``r1<>r2``.
+Intros; Apply sym_not_eqT; Apply Rlt_not_eq; Auto with real.
+Qed.
+
+(**********)
+Lemma imp_not_Req:(r1,r2:R)(``r1<r2``\/ ``r1>r2``) -> ``r1<>r2``.
+Generalize Rlt_not_eq Rgt_not_eq. Intuition EAuto.
+Qed.
+Hints Resolve imp_not_Req : real.
+
+(** Reasoning by case on equalities and order *)
+
+(**********)
+Lemma Req_EM:(r1,r2:R)(r1==r2)\/``r1<>r2``.
+Intros ; Generalize (total_order_T r1 r2) imp_not_Req ; Intuition EAuto 3.
+Qed.
+Hints Resolve Req_EM : real.
+
+(**********)
+Lemma total_order:(r1,r2:R)``r1<r2``\/(r1==r2)\/``r1>r2``.
+Intros;Generalize (total_order_T r1 r2);Tauto.
+Qed.
+
+(**********)
+Lemma not_Req:(r1,r2:R)``r1<>r2``->(``r1<r2``\/``r1>r2``).
+Intros; Generalize (total_order_T r1 r2) ; Tauto.
+Qed.
+
+
+(*********************************************************************************)
+(** Order Lemma : relating [<], [>], [<=] and [>=] *)
+(*********************************************************************************)
+
+(**********)
+Lemma Rlt_le:(r1,r2:R)``r1<r2``-> ``r1<=r2``.
+Intros ; Red ; Tauto.
+Qed.
+Hints Resolve Rlt_le : real.
+
+(**********)
+Lemma Rle_ge : (r1,r2:R)``r1<=r2`` -> ``r2>=r1``.
+NewDestruct 1; Red; Auto with real.
+Qed.
+
+Hints Immediate Rle_ge : real.
+
+(**********)
+Lemma Rge_le : (r1,r2:R)``r1>=r2`` -> ``r2<=r1``.
+NewDestruct 1; Red; Auto with real.
+Qed.
+
+Hints Resolve Rge_le : real.
+
+(**********)
+Lemma not_Rle:(r1,r2:R)~``r1<=r2`` -> ``r2<r1``.
+Intros r1 r2 ; Generalize (total_order r1 r2) ; Unfold Rle; Tauto.
+Qed.
+
+Hints Immediate not_Rle : real.
+
+Lemma not_Rge:(r1,r2:R)~``r1>=r2`` -> ``r1<r2``.
+Intros; Apply not_Rle; Auto with real.
+Qed.
+
+(**********)
+Lemma Rlt_le_not:(r1,r2:R)``r2<r1`` -> ~``r1<=r2``.
+Generalize Rlt_antisym imp_not_Req ; Unfold Rle.
+Intuition EAuto 3.
+Qed.
+
+Lemma Rle_not:(r1,r2:R)``r1>r2`` -> ~``r1<=r2``.
+Proof Rlt_le_not.
+
+Hints Immediate Rlt_le_not : real.
+
+Lemma Rle_not_lt: (r1, r2:R) ``r2 <= r1`` -> ~``r1<r2``.
+Intros r1 r2. Generalize (Rlt_antisym r1 r2) (imp_not_Req r1 r2).
+Unfold Rle; Intuition.
+Qed.
+
+(**********)
+Lemma Rlt_ge_not:(r1,r2:R)``r1<r2`` -> ~``r1>=r2``.
+Generalize Rlt_le_not. Unfold Rle Rge. Intuition EAuto 3.
+Qed.
+
+Hints Immediate Rlt_ge_not : real.
+
+(**********)
+Lemma eq_Rle:(r1,r2:R)r1==r2->``r1<=r2``.
+Unfold Rle; Tauto.
+Qed.
+Hints Immediate eq_Rle : real.
+
+Lemma eq_Rge:(r1,r2:R)r1==r2->``r1>=r2``.
+Unfold Rge; Tauto.
+Qed.
+Hints Immediate eq_Rge : real.
+
+Lemma eq_Rle_sym:(r1,r2:R)r2==r1->``r1<=r2``.
+Unfold Rle; Auto.
+Qed.
+Hints Immediate eq_Rle_sym : real.
+
+Lemma eq_Rge_sym:(r1,r2:R)r2==r1->``r1>=r2``.
+Unfold Rge; Auto.
+Qed.
+Hints Immediate eq_Rge_sym : real.
+
+Lemma Rle_antisym : (r1,r2:R)``r1<=r2`` -> ``r2<=r1``-> r1==r2.
+Intros r1 r2; Generalize (Rlt_antisym r1 r2) ; Unfold Rle ; Intuition.
+Qed.
+Hints Resolve Rle_antisym : real.
+
+(**********)
+Lemma Rle_le_eq:(r1,r2:R)(``r1<=r2``/\``r2<=r1``)<->(r1==r2).
+Intuition.
+Qed.
+
+Lemma Rlt_rew : (x,x',y,y':R)``x==x'``->``x'<y'`` -> `` y' == y`` -> ``x < y``.
+Intros x x' y y'; Intros; Replace x with x'; Replace y with y'; Assumption.
+Qed.
+
+(**********)
+Lemma Rle_trans:(r1,r2,r3:R) ``r1<=r2``->``r2<=r3``->``r1<=r3``.
+Generalize trans_eqT Rlt_trans Rlt_rew.
+Unfold Rle.
+Intuition EAuto 2.
+Qed.
+
+(**********)
+Lemma Rle_lt_trans:(r1,r2,r3:R)``r1<=r2``->``r2<r3``->``r1<r3``.
+Generalize Rlt_trans Rlt_rew.
+Unfold Rle.
+Intuition EAuto 2.
+Qed.
+
+(**********)
+Lemma Rlt_le_trans:(r1,r2,r3:R)``r1<r2``->``r2<=r3``->``r1<r3``.
+Generalize Rlt_trans Rlt_rew; Unfold Rle; Intuition EAuto 2.
+Qed.
+
+
+(** Decidability of the order *)
+Lemma total_order_Rlt:(r1,r2:R)(sumboolT ``r1<r2`` ~(``r1<r2``)).
+Intros;Generalize (total_order_T r1 r2) (imp_not_Req r1 r2) ; Intuition.
+Qed.
+
+(**********)
+Lemma total_order_Rle:(r1,r2:R)(sumboolT ``r1<=r2`` ~(``r1<=r2``)).
+Intros r1 r2.
+Generalize (total_order_T r1 r2) (imp_not_Req r1 r2).
+Intuition EAuto 4 with real.
+Qed.
+
+(**********)
+Lemma total_order_Rgt:(r1,r2:R)(sumboolT ``r1>r2`` ~(``r1>r2``)).
+Intros;Unfold Rgt;Intros;Apply total_order_Rlt.
+Qed.
+
+(**********)
+Lemma total_order_Rge:(r1,r2:R)(sumboolT (``r1>=r2``) ~(``r1>=r2``)).
+Intros;Generalize (total_order_Rle r2 r1);Intuition.
+Qed.
+
+Lemma total_order_Rlt_Rle:(r1,r2:R)(sumboolT ``r1<r2`` ``r2<=r1``).
+Intros;Generalize (total_order_T r1 r2); Intuition.
+Qed.
+
+Lemma Rle_or_lt: (n, m:R)(Rle n m) \/ (Rlt m n).
+Intros n m; Elim (total_order_Rlt_Rle m n);Auto with real.
+Qed.
+
+Lemma total_order_Rle_Rlt_eq :(r1,r2:R)``r1<=r2``->
+ (sumboolT ``r1<r2`` ``r1==r2``).
+Intros r1 r2 H;Generalize (total_order_T r1 r2); Intuition.
+Qed.
+
+(**********)
+Lemma inser_trans_R:(n,m,p,q:R)``n<=m<p``-> (sumboolT ``n<=m<q`` ``q<=m<p``).
+Intros n m p q; Intros; Generalize (total_order_Rlt_Rle m q); Intuition.
+Qed.
+
+(****************************************************************)
+(** Field Lemmas *)
+(* This part contains lemma involving the Fields operations *)
+(****************************************************************)
+(*********************************************************)
+(** Addition *)
+(*********************************************************)
+
+Lemma Rplus_ne:(r:R)``r+0==r``/\``0+r==r``.
+Intro;Split;Ring.
+Qed.
+Hints Resolve Rplus_ne : real v62.
+
+Lemma Rplus_Or:(r:R)``r+0==r``.
+Intro; Ring.
+Qed.
+Hints Resolve Rplus_Or : real.
+
+(**********)
+Lemma Rplus_Ropp_l:(r:R)``(-r)+r==0``.
+ Intro; Ring.
+Qed.
+Hints Resolve Rplus_Ropp_l : real.
+
+
+(**********)
+Lemma Rplus_Ropp:(x,y:R)``x+y==0``->``y== -x``.
+ Intros x y H; Replace y with ``(-x+x)+y``;
+ [ Rewrite -> Rplus_assoc; Rewrite -> H; Ring
+ | Ring ].
+Qed.
+
+(*i New i*)
+Hint eqT_R_congr : real := Resolve (congr_eqT R).
+
+Lemma Rplus_plus_r:(r,r1,r2:R)(r1==r2)->``r+r1==r+r2``.
+ Auto with real.
+Qed.
+
+(*i Old i*)Hints Resolve Rplus_plus_r : v62.
+
+(**********)
+Lemma r_Rplus_plus:(r,r1,r2:R)``r+r1==r+r2``->r1==r2.
+ Intros; Transitivity ``(-r+r)+r1``.
+ Ring.
+ Transitivity ``(-r+r)+r2``.
+ Repeat Rewrite -> Rplus_assoc; Rewrite <- H; Reflexivity.
+ Ring.
+Qed.
+Hints Resolve r_Rplus_plus : real.
+
+(**********)
+Lemma Rplus_ne_i:(r,b:R)``r+b==r`` -> ``b==0``.
+ Intros r b; Pattern 2 r; Replace r with ``r+0``;
+ EAuto with real.
+Qed.
+
+(***********************************************************)
+(** Multiplication *)
+(***********************************************************)
+
+(**********)
+Lemma Rinv_r:(r:R)``r<>0``->``r* (/r)==1``.
+ Intros; Rewrite -> Rmult_sym; Auto with real.
+Qed.
+Hints Resolve Rinv_r : real.
+
+Lemma Rinv_l_sym:(r:R)``r<>0``->``1==(/r) * r``.
+ Symmetry; Auto with real.
+Qed.
+
+Lemma Rinv_r_sym:(r:R)``r<>0``->``1==r* (/r)``.
+ Symmetry; Auto with real.
+Qed.
+Hints Resolve Rinv_l_sym Rinv_r_sym : real.
+
+
+(**********)
+Lemma Rmult_Or :(r:R) ``r*0==0``.
+Intro; Ring.
+Qed.
+Hints Resolve Rmult_Or : real v62.
+
+(**********)
+Lemma Rmult_Ol:(r:R) ``0*r==0``.
+Intro; Ring.
+Qed.
+Hints Resolve Rmult_Ol : real v62.
+
+(**********)
+Lemma Rmult_ne:(r:R)``r*1==r``/\``1*r==r``.
+Intro;Split;Ring.
+Qed.
+Hints Resolve Rmult_ne : real v62.
+
+(**********)
+Lemma Rmult_1r:(r:R)(``r*1==r``).
+Intro; Ring.
+Qed.
+Hints Resolve Rmult_1r : real.
+
+(**********)
+Lemma Rmult_mult_r:(r,r1,r2:R)r1==r2->``r*r1==r*r2``.
+ Auto with real.
+Qed.
+
+(*i OLD i*)Hints Resolve Rmult_mult_r : v62.
+
+(**********)
+Lemma r_Rmult_mult:(r,r1,r2:R)(``r*r1==r*r2``)->``r<>0``->(r1==r2).
+ Intros; Transitivity ``(/r * r)*r1``.
+ Rewrite Rinv_l; Auto with real.
+ Transitivity ``(/r * r)*r2``.
+ Repeat Rewrite Rmult_assoc; Rewrite H; Trivial.
+ Rewrite Rinv_l; Auto with real.
+Qed.
+
+(**********)
+Lemma without_div_Od:(r1,r2:R)``r1*r2==0`` -> ``r1==0`` \/ ``r2==0``.
+ Intros; Case (Req_EM r1 ``0``); [Intro Hz | Intro Hnotz].
+ Auto.
+ Right; Apply r_Rmult_mult with r1; Trivial.
+ Rewrite H; Auto with real.
+Qed.
+
+(**********)
+Lemma without_div_Oi:(r1,r2:R) ``r1==0``\/``r2==0`` -> ``r1*r2==0``.
+ Intros r1 r2 [H | H]; Rewrite H; Auto with real.
+Qed.
+
+Hints Resolve without_div_Oi : real.
+
+(**********)
+Lemma without_div_Oi1:(r1,r2:R) ``r1==0`` -> ``r1*r2==0``.
+ Auto with real.
+Qed.
+
+(**********)
+Lemma without_div_Oi2:(r1,r2:R) ``r2==0`` -> ``r1*r2==0``.
+ Auto with real.
+Qed.
+
+
+(**********)
+Lemma without_div_O_contr:(r1,r2:R)``r1*r2<>0`` -> ``r1<>0`` /\ ``r2<>0``.
+Intros r1 r2 H; Split; Red; Intro; Apply H; Auto with real.
+Qed.
+
+(**********)
+Lemma mult_non_zero :(r1,r2:R)``r1<>0`` /\ ``r2<>0`` -> ``r1*r2<>0``.
+Red; Intros r1 r2 (H1,H2) H.
+Case (without_div_Od r1 r2); Auto with real.
+Qed.
+Hints Resolve mult_non_zero : real.
+
+(**********)
+Lemma Rmult_Rplus_distrl:
+ (r1,r2,r3:R) ``(r1+r2)*r3 == (r1*r3)+(r2*r3)``.
+Intros; Ring.
+Qed.
+
+(** Square function *)
+
+(***********)
+Definition Rsqr:R->R:=[r:R]``r*r``.
+V7only[Notation "x ²" := (Rsqr x) (at level 2,left associativity).].
+
+(***********)
+Lemma Rsqr_O:(Rsqr ``0``)==``0``.
+ Unfold Rsqr; Auto with real.
+Qed.
+
+(***********)
+Lemma Rsqr_r_R0:(r:R)(Rsqr r)==``0``->``r==0``.
+Unfold Rsqr;Intros;Elim (without_div_Od r r H);Trivial.
+Qed.
+
+(*********************************************************)
+(** Opposite *)
+(*********************************************************)
+
+(**********)
+Lemma eq_Ropp:(r1,r2:R)(r1==r2)->``-r1 == -r2``.
+ Auto with real.
+Qed.
+Hints Resolve eq_Ropp : real.
+
+(**********)
+Lemma Ropp_O:``-0==0``.
+ Ring.
+Qed.
+Hints Resolve Ropp_O : real v62.
+
+(**********)
+Lemma eq_RoppO:(r:R)``r==0``-> ``-r==0``.
+ Intros; Rewrite -> H; Auto with real.
+Qed.
+Hints Resolve eq_RoppO : real.
+
+(**********)
+Lemma Ropp_Ropp:(r:R)``-(-r)==r``.
+ Intro; Ring.
+Qed.
+Hints Resolve Ropp_Ropp : real.
+
+(*********)
+Lemma Ropp_neq:(r:R)``r<>0``->``-r<>0``.
+Red;Intros r H H0.
+Apply H.
+Transitivity ``-(-r)``; Auto with real.
+Qed.
+Hints Resolve Ropp_neq : real.
+
+(**********)
+Lemma Ropp_distr1:(r1,r2:R)``-(r1+r2)==(-r1 + -r2)``.
+ Intros; Ring.
+Qed.
+Hints Resolve Ropp_distr1 : real.
+
+(** Opposite and multiplication *)
+
+Lemma Ropp_mul1:(r1,r2:R)``(-r1)*r2 == -(r1*r2)``.
+ Intros; Ring.
+Qed.
+Hints Resolve Ropp_mul1 : real.
+
+(**********)
+Lemma Ropp_mul2:(r1,r2:R)``(-r1)*(-r2)==r1*r2``.
+ Intros; Ring.
+Qed.
+Hints Resolve Ropp_mul2 : real.
+
+Lemma Ropp_mul3 : (r1,r2:R) ``r1*(-r2) == -(r1*r2)``.
+Intros; Rewrite <- Ropp_mul1; Ring.
+Qed.
+
+(** Substraction *)
+
+Lemma minus_R0:(r:R)``r-0==r``.
+Intro;Ring.
+Qed.
+Hints Resolve minus_R0 : real.
+
+Lemma Rminus_Ropp:(r:R)``0-r==-r``.
+Intro;Ring.
+Qed.
+Hints Resolve Rminus_Ropp : real.
+
+(**********)
+Lemma Ropp_distr2:(r1,r2:R)``-(r1-r2)==r2-r1``.
+ Intros; Ring.
+Qed.
+Hints Resolve Ropp_distr2 : real.
+
+Lemma Ropp_distr3:(r1,r2:R)``-(r2-r1)==r1-r2``.
+Intros; Ring.
+Qed.
+Hints Resolve Ropp_distr3 : real.
+
+(**********)
+Lemma eq_Rminus:(r1,r2:R)(r1==r2)->``r1-r2==0``.
+ Intros; Rewrite H; Ring.
+Qed.
+Hints Resolve eq_Rminus : real.
+
+(**********)
+Lemma Rminus_eq:(r1,r2:R)``r1-r2==0`` -> r1==r2.
+ Intros r1 r2; Unfold Rminus; Rewrite -> Rplus_sym; Intro.
+ Rewrite <- (Ropp_Ropp r2); Apply (Rplus_Ropp (Ropp r2) r1 H).
+Qed.
+Hints Immediate Rminus_eq : real.
+
+Lemma Rminus_eq_right:(r1,r2:R)``r2-r1==0`` -> r1==r2.
+Intros;Generalize (Rminus_eq r2 r1 H);Clear H;Intro H;Rewrite H;Ring.
+Qed.
+Hints Immediate Rminus_eq_right : real.
+
+Lemma Rplus_Rminus: (p,q:R)``p+(q-p)``==q.
+Intros; Ring.
+Qed.
+Hints Resolve Rplus_Rminus:real.
+
+(**********)
+Lemma Rminus_eq_contra:(r1,r2:R)``r1<>r2``->``r1-r2<>0``.
+Red; Intros r1 r2 H H0.
+Apply H; Auto with real.
+Qed.
+Hints Resolve Rminus_eq_contra : real.
+
+Lemma Rminus_not_eq:(r1,r2:R)``r1-r2<>0``->``r1<>r2``.
+Red; Intros; Elim H; Apply eq_Rminus; Auto.
+Qed.
+Hints Resolve Rminus_not_eq : real.
+
+Lemma Rminus_not_eq_right:(r1,r2:R)``r2-r1<>0`` -> ``r1<>r2``.
+Red; Intros;Elim H;Rewrite H0; Ring.
+Qed.
+Hints Resolve Rminus_not_eq_right : real.
+
+V7only [Notation not_sym := (sym_not_eq R).].
+
+(**********)
+Lemma Rminus_distr: (x,y,z:R) ``x*(y-z)==(x*y) - (x*z)``.
+Intros; Ring.
+Qed.
+
+(** Inverse *)
+Lemma Rinv_R1:``/1==1``.
+Field;Auto with real.
+Qed.
+Hints Resolve Rinv_R1 : real.
+
+(*********)
+Lemma Rinv_neq_R0:(r:R)``r<>0``->``(/r)<>0``.
+Red; Intros; Apply R1_neq_R0.
+Replace ``1`` with ``(/r) * r``; Auto with real.
+Qed.
+Hints Resolve Rinv_neq_R0 : real.
+
+(*********)
+Lemma Rinv_Rinv:(r:R)``r<>0``->``/(/r)==r``.
+Intros;Field;Auto with real.
+Qed.
+Hints Resolve Rinv_Rinv : real.
+
+(*********)
+Lemma Rinv_Rmult:(r1,r2:R)``r1<>0``->``r2<>0``->``/(r1*r2)==(/r1)*(/r2)``.
+Intros;Field;Auto with real.
+Qed.
+
+(*********)
+Lemma Ropp_Rinv:(r:R)``r<>0``->``-(/r)==/(-r)``.
+Intros;Field;Auto with real.
+Qed.
+
+Lemma Rinv_r_simpl_r : (r1,r2:R)``r1<>0``->``r1*(/r1)*r2==r2``.
+Intros; Transitivity ``1*r2``; Auto with real.
+Rewrite Rinv_r; Auto with real.
+Qed.
+
+Lemma Rinv_r_simpl_l : (r1,r2:R)``r1<>0``->``r2*r1*(/r1)==r2``.
+Intros; Transitivity ``r2*1``; Auto with real.
+Transitivity ``r2*(r1*/r1)``; Auto with real.
+Qed.
+
+Lemma Rinv_r_simpl_m : (r1,r2:R)``r1<>0``->``r1*r2*(/r1)==r2``.
+Intros; Transitivity ``r2*1``; Auto with real.
+Transitivity ``r2*(r1*/r1)``; Auto with real.
+Ring.
+Qed.
+Hints Resolve Rinv_r_simpl_l Rinv_r_simpl_r Rinv_r_simpl_m : real.
+
+(*********)
+Lemma Rinv_Rmult_simpl:(a,b,c:R)``a<>0``->``(a*(/b))*(c*(/a))==c*(/b)``.
+Intros a b c; Intros.
+Transitivity ``(a*/a)*(c*(/b))``; Auto with real.
+Ring.
+Qed.
+
+(** Order and addition *)
+
+Lemma Rlt_compatibility_r:(r,r1,r2:R)``r1<r2``->``r1+r<r2+r``.
+Intros.
+Rewrite (Rplus_sym r1 r); Rewrite (Rplus_sym r2 r); Auto with real.
+Qed.
+
+Hints Resolve Rlt_compatibility_r : real.
+
+(**********)
+Lemma Rlt_anti_compatibility: (r,r1,r2:R)``r+r1 < r+r2`` -> ``r1<r2``.
+Intros; Cut ``(-r+r)+r1 < (-r+r)+r2``.
+Rewrite -> Rplus_Ropp_l.
+Elim (Rplus_ne r1); Elim (Rplus_ne r2); Intros; Rewrite <- H3;
+ Rewrite <- H1; Auto with zarith real.
+Rewrite -> Rplus_assoc; Rewrite -> Rplus_assoc;
+ Apply (Rlt_compatibility ``-r`` ``r+r1`` ``r+r2`` H).
+Qed.
+
+(**********)
+Lemma Rle_compatibility:(r,r1,r2:R)``r1<=r2`` -> ``r+r1 <= r+r2 ``.
+Unfold Rle; Intros; Elim H; Intro.
+Left; Apply (Rlt_compatibility r r1 r2 H0).
+Right; Rewrite <- H0; Auto with zarith real.
+Qed.
+
+(**********)
+Lemma Rle_compatibility_r:(r,r1,r2:R)``r1<=r2`` -> ``r1+r<=r2+r``.
+Unfold Rle; Intros; Elim H; Intro.
+Left; Apply (Rlt_compatibility_r r r1 r2 H0).
+Right; Rewrite <- H0; Auto with real.
+Qed.
+
+Hints Resolve Rle_compatibility Rle_compatibility_r : real.
+
+(**********)
+Lemma Rle_anti_compatibility: (r,r1,r2:R)``r+r1<=r+r2`` -> ``r1<=r2``.
+Unfold Rle; Intros; Elim H; Intro.
+Left; Apply (Rlt_anti_compatibility r r1 r2 H0).
+Right; Apply (r_Rplus_plus r r1 r2 H0).
+Qed.
+
+(**********)
+Lemma sum_inequa_Rle_lt:(a,x,b,c,y,d:R)``a<=x`` -> ``x<b`` ->
+ ``c<y`` -> ``y<=d`` -> ``a+c < x+y < b+d``.
+Intros;Split.
+Apply Rlt_le_trans with ``a+y``; Auto with real.
+Apply Rlt_le_trans with ``b+y``; Auto with real.
+Qed.
+
+(*********)
+Lemma Rplus_lt:(r1,r2,r3,r4:R)``r1<r2`` -> ``r3<r4`` -> ``r1+r3 < r2+r4``.
+Intros; Apply Rlt_trans with ``r2+r3``; Auto with real.
+Qed.
+
+Lemma Rplus_le:(r1,r2,r3,r4:R)``r1<=r2`` -> ``r3<=r4`` -> ``r1+r3 <= r2+r4``.
+Intros; Apply Rle_trans with ``r2+r3``; Auto with real.
+Qed.
+
+(*********)
+Lemma Rplus_lt_le_lt:(r1,r2,r3,r4:R)``r1<r2`` -> ``r3<=r4`` ->
+ ``r1+r3 < r2+r4``.
+Intros; Apply Rlt_le_trans with ``r2+r3``; Auto with real.
+Qed.
+
+(*********)
+Lemma Rplus_le_lt_lt:(r1,r2,r3,r4:R)``r1<=r2`` -> ``r3<r4`` ->
+ ``r1+r3 < r2+r4``.
+Intros; Apply Rle_lt_trans with ``r2+r3``; Auto with real.
+Qed.
+
+Hints Immediate Rplus_lt Rplus_le Rplus_lt_le_lt Rplus_le_lt_lt : real.
+
+(** Order and Opposite *)
+
+(**********)
+Lemma Rgt_Ropp:(r1,r2:R) ``r1 > r2`` -> ``-r1 < -r2``.
+Unfold Rgt; Intros.
+Apply (Rlt_anti_compatibility ``r2+r1``).
+Replace ``r2+r1+(-r1)`` with r2.
+Replace ``r2+r1+(-r2)`` with r1.
+Trivial.
+Ring.
+Ring.
+Qed.
+Hints Resolve Rgt_Ropp.
+
+(**********)
+Lemma Rlt_Ropp:(r1,r2:R) ``r1 < r2`` -> ``-r1 > -r2``.
+Unfold Rgt; Auto with real.
+Qed.
+Hints Resolve Rlt_Ropp : real.
+
+Lemma Ropp_Rlt: (x,y:R) ``-y < -x`` ->``x<y``.
+Intros x y H'.
+Rewrite <- (Ropp_Ropp x); Rewrite <- (Ropp_Ropp y); Auto with real.
+Qed.
+Hints Immediate Ropp_Rlt : real.
+
+Lemma Rlt_Ropp1:(r1,r2:R) ``r2 < r1`` -> ``-r1 < -r2``.
+Auto with real.
+Qed.
+Hints Resolve Rlt_Ropp1 : real.
+
+(**********)
+Lemma Rle_Ropp:(r1,r2:R) ``r1 <= r2`` -> ``-r1 >= -r2``.
+Unfold Rge; Intros r1 r2 [H|H]; Auto with real.
+Qed.
+Hints Resolve Rle_Ropp : real.
+
+Lemma Ropp_Rle: (x,y:R) ``-y <= -x`` ->``x <= y``.
+Intros x y H.
+Elim H;Auto with real.
+Intro H1;Rewrite <-(Ropp_Ropp x);Rewrite <-(Ropp_Ropp y);Rewrite H1;
+ Auto with real.
+Qed.
+Hints Immediate Ropp_Rle : real.
+
+Lemma Rle_Ropp1:(r1,r2:R) ``r2 <= r1`` -> ``-r1 <= -r2``.
+Intros r1 r2 H;Elim H;Auto with real.
+Qed.
+Hints Resolve Rle_Ropp1 : real.
+
+(**********)
+Lemma Rge_Ropp:(r1,r2:R) ``r1 >= r2`` -> ``-r1 <= -r2``.
+Unfold Rge; Intros r1 r2 [H|H]; Auto with real.
+Qed.
+Hints Resolve Rge_Ropp : real.
+
+(**********)
+Lemma Rlt_RO_Ropp:(r:R) ``0 < r`` -> ``0 > -r``.
+Intros; Replace ``0`` with ``-0``; Auto with real.
+Qed.
+Hints Resolve Rlt_RO_Ropp : real.
+
+(**********)
+Lemma Rgt_RO_Ropp:(r:R) ``0 > r`` -> ``0 < -r``.
+Intros; Replace ``0`` with ``-0``; Auto with real.
+Qed.
+Hints Resolve Rgt_RO_Ropp : real.
+
+(**********)
+Lemma Rgt_RoppO:(r:R)``r>0``->``(-r)<0``.
+Intros; Rewrite <- Ropp_O; Auto with real.
+Qed.
+
+(**********)
+Lemma Rlt_RoppO:(r:R)``r<0``->``-r>0``.
+Intros; Rewrite <- Ropp_O; Auto with real.
+Qed.
+Hints Resolve Rgt_RoppO Rlt_RoppO: real.
+
+(**********)
+Lemma Rle_RO_Ropp:(r:R) ``0 <= r`` -> ``0 >= -r``.
+Intros; Replace ``0`` with ``-0``; Auto with real.
+Qed.
+Hints Resolve Rle_RO_Ropp : real.
+
+(**********)
+Lemma Rge_RO_Ropp:(r:R) ``0 >= r`` -> ``0 <= -r``.
+Intros; Replace ``0`` with ``-0``; Auto with real.
+Qed.
+Hints Resolve Rge_RO_Ropp : real.
+
+(** Order and multiplication *)
+
+Lemma Rlt_monotony_r:(r,r1,r2:R)``0<r`` -> ``r1 < r2`` -> ``r1*r < r2*r``.
+Intros; Rewrite (Rmult_sym r1 r); Rewrite (Rmult_sym r2 r); Auto with real.
+Qed.
+Hints Resolve Rlt_monotony_r.
+
+Lemma Rlt_monotony_contra: (z, x, y:R) ``0<z`` ->``z*x<z*y`` ->``x<y``.
+Intros z x y H H0.
+Case (total_order x y); Intros Eq0; Auto; Elim Eq0; Clear Eq0; Intros Eq0.
+ Rewrite Eq0 in H0;ElimType False;Apply (Rlt_antirefl ``z*y``);Auto.
+Generalize (Rlt_monotony z y x H Eq0);Intro;ElimType False;
+ Generalize (Rlt_trans ``z*x`` ``z*y`` ``z*x`` H0 H1);Intro;
+ Apply (Rlt_antirefl ``z*x``);Auto.
+Qed.
+
+V7only [
+Notation Rlt_monotony_rev := Rlt_monotony_contra.
+Notation "'Rlt_monotony_contra' a b c" := (Rlt_monotony_contra c a b)
+ (at level 10, a,b,c at level 9, only parsing).
+].
+
+Lemma Rlt_anti_monotony:(r,r1,r2:R)``r < 0`` -> ``r1 < r2`` -> ``r*r1 > r*r2``.
+Intros; Replace r with ``-(-r)``; Auto with real.
+Rewrite (Ropp_mul1 ``-r``); Rewrite (Ropp_mul1 ``-r``).
+Apply Rlt_Ropp; Auto with real.
+Qed.
+
+(**********)
+Lemma Rle_monotony:
+ (r,r1,r2:R)``0 <= r`` -> ``r1 <= r2`` -> ``r*r1 <= r*r2``.
+Intros r r1 r2 H H0; NewDestruct H; NewDestruct H0; Unfold Rle; Auto with real.
+Right; Rewrite <- H; Do 2 Rewrite Rmult_Ol; Reflexivity.
+Qed.
+Hints Resolve Rle_monotony : real.
+
+Lemma Rle_monotony_r:
+ (r,r1,r2:R)``0 <= r`` -> ``r1 <= r2`` -> ``r1*r <= r2*r``.
+Intros r r1 r2 H;
+Rewrite (Rmult_sym r1 r); Rewrite (Rmult_sym r2 r); Auto with real.
+Qed.
+Hints Resolve Rle_monotony_r : real.
+
+Lemma Rmult_le_reg_l:
+ (z, x, y:R) ``0<z`` ->``z*x<=z*y`` ->``x<=y``.
+Intros z x y H H0;Case H0; Auto with real.
+Intros H1; Apply Rlt_le.
+Apply Rlt_monotony_contra with z := z;Auto.
+Intros H1;Replace x with (Rmult (Rinv z) (Rmult z x)); Auto with real.
+Replace y with (Rmult (Rinv z) (Rmult z y)).
+ Rewrite H1;Auto with real.
+Rewrite <- Rmult_assoc; Rewrite Rinv_l; Auto with real.
+Rewrite <- Rmult_assoc; Rewrite Rinv_l; Auto with real.
+Qed.
+
+V7only [
+Notation "'Rle_monotony_contra' a b c" := (Rmult_le_reg_l c a b)
+ (at level 10, a,b,c at level 9, only parsing).
+Notation Rle_monotony_contra := Rmult_le_reg_l.
+].
+
+
+Lemma Rle_anti_monotony1
+ :(r,r1,r2:R)``r <= 0`` -> ``r1 <= r2`` -> ``r*r2 <= r*r1``.
+Intros; Replace r with ``-(-r)``; Auto with real.
+Do 2 Rewrite (Ropp_mul1 ``-r``).
+Apply Rle_Ropp1; Auto with real.
+Qed.
+Hints Resolve Rle_anti_monotony1 : real.
+
+Lemma Rle_anti_monotony
+ :(r,r1,r2:R)``r <= 0`` -> ``r1 <= r2`` -> ``r*r1 >= r*r2``.
+Intros; Apply Rle_ge; Auto with real.
+Qed.
+Hints Resolve Rle_anti_monotony : real.
+
+Lemma Rle_Rmult_comp:
+ (x, y, z, t:R) ``0 <= x`` -> ``0 <= z`` -> ``x <= y`` -> ``z <= t`` ->
+ ``x*z <= y*t``.
+Intros x y z t H' H'0 H'1 H'2.
+Apply Rle_trans with r2 := ``x*t``; Auto with real.
+Repeat Rewrite [x:?](Rmult_sym x t).
+Apply Rle_monotony; Auto.
+Apply Rle_trans with z; Auto.
+Qed.
+Hints Resolve Rle_Rmult_comp :real.
+
+Lemma Rmult_lt:(r1,r2,r3,r4:R)``r3>0`` -> ``r2>0`` ->
+ `` r1 < r2`` -> ``r3 < r4`` -> ``r1*r3 < r2*r4``.
+Intros; Apply Rlt_trans with ``r2*r3``; Auto with real.
+Qed.
+
+(*********)
+Lemma Rmult_lt_0
+ :(r1,r2,r3,r4:R)``r3>=0``->``r2>0``->``r1<r2``->``r3<r4``->``r1*r3<r2*r4``.
+Intros; Apply Rle_lt_trans with ``r2*r3``; Auto with real.
+Qed.
+
+(** Order and Substractions *)
+Lemma Rlt_minus:(r1,r2:R)``r1 < r2`` -> ``r1-r2 < 0``.
+Intros; Apply (Rlt_anti_compatibility ``r2``).
+Replace ``r2+(r1-r2)`` with r1.
+Replace ``r2+0`` with r2; Auto with real.
+Ring.
+Qed.
+Hints Resolve Rlt_minus : real.
+
+(**********)
+Lemma Rle_minus:(r1,r2:R)``r1 <= r2`` -> ``r1-r2 <= 0``.
+NewDestruct 1; Unfold Rle; Auto with real.
+Qed.
+
+(**********)
+Lemma Rminus_lt:(r1,r2:R)``r1-r2 < 0`` -> ``r1 < r2``.
+Intros; Replace r1 with ``r1-r2+r2``.
+Pattern 3 r2; Replace r2 with ``0+r2``; Auto with real.
+Ring.
+Qed.
+
+(**********)
+Lemma Rminus_le:(r1,r2:R)``r1-r2 <= 0`` -> ``r1 <= r2``.
+Intros; Replace r1 with ``r1-r2+r2``.
+Pattern 3 r2; Replace r2 with ``0+r2``; Auto with real.
+Ring.
+Qed.
+
+(**********)
+Lemma tech_Rplus:(r,s:R)``0<=r`` -> ``0<s`` -> ``r+s<>0``.
+Intros; Apply sym_not_eqT; Apply Rlt_not_eq.
+Rewrite Rplus_sym; Replace ``0`` with ``0+0``; Auto with real.
+Qed.
+Hints Immediate tech_Rplus : real.
+
+(** Order and the square function *)
+Lemma pos_Rsqr:(r:R)``0<=(Rsqr r)``.
+Intro; Case (total_order_Rlt_Rle r ``0``); Unfold Rsqr; Intro.
+Replace ``r*r`` with ``(-r)*(-r)``; Auto with real.
+Replace ``0`` with ``-r*0``; Auto with real.
+Replace ``0`` with ``0*r``; Auto with real.
+Qed.
+
+(***********)
+Lemma pos_Rsqr1:(r:R)``r<>0``->``0<(Rsqr r)``.
+Intros; Case (not_Req r ``0``); Trivial; Unfold Rsqr; Intro.
+Replace ``r*r`` with ``(-r)*(-r)``; Auto with real.
+Replace ``0`` with ``-r*0``; Auto with real.
+Replace ``0`` with ``0*r``; Auto with real.
+Qed.
+Hints Resolve pos_Rsqr pos_Rsqr1 : real.
+
+(** Zero is less than one *)
+Lemma Rlt_R0_R1:``0<1``.
+Replace ``1`` with ``(Rsqr 1)``; Auto with real.
+Unfold Rsqr; Auto with real.
+Qed.
+Hints Resolve Rlt_R0_R1 : real.
+
+Lemma Rle_R0_R1:``0<=1``.
+Left.
+Exact Rlt_R0_R1.
+Qed.
+
+(** Order and inverse *)
+Lemma Rlt_Rinv:(r:R)``0<r``->``0</r``.
+Intros; Apply not_Rle; Red; Intros.
+Absurd ``1<=0``; Auto with real.
+Replace ``1`` with ``r*(/r)``; Auto with real.
+Replace ``0`` with ``r*0``; Auto with real.
+Qed.
+Hints Resolve Rlt_Rinv : real.
+
+(*********)
+Lemma Rlt_Rinv2:(r:R)``r < 0``->``/r < 0``.
+Intros; Apply not_Rle; Red; Intros.
+Absurd ``1<=0``; Auto with real.
+Replace ``1`` with ``r*(/r)``; Auto with real.
+Replace ``0`` with ``r*0``; Auto with real.
+Qed.
+Hints Resolve Rlt_Rinv2 : real.
+
+(*********)
+Lemma Rinv_lt:(r1,r2:R)``0 < r1*r2`` -> ``r1 < r2`` -> ``/r2 < /r1``.
+Intros; Apply Rlt_monotony_rev with ``r1*r2``; Auto with real.
+Case (without_div_O_contr r1 r2 ); Intros; Auto with real.
+Replace ``r1*r2*/r2`` with r1.
+Replace ``r1*r2*/r1`` with r2; Trivial.
+Symmetry; Auto with real.
+Symmetry; Auto with real.
+Qed.
+
+Lemma Rlt_Rinv_R1: (x, y:R) ``1 <= x`` -> ``x<y`` ->``/y< /x``.
+Intros x y H' H'0.
+Cut (Rlt R0 x); [Intros Lt0 | Apply Rlt_le_trans with r2 := R1];
+ Auto with real.
+Apply Rlt_monotony_contra with z := x; Auto with real.
+Rewrite (Rmult_sym x (Rinv x)); Rewrite Rinv_l; Auto with real.
+Apply Rlt_monotony_contra with z := y; Auto with real.
+Apply Rlt_trans with r2:=x;Auto.
+Cut ``y*(x*/y)==x``.
+Intro H1;Rewrite H1;Rewrite (Rmult_1r y);Auto.
+Rewrite (Rmult_sym x); Rewrite <- Rmult_assoc; Rewrite (Rmult_sym y (Rinv y));
+ Rewrite Rinv_l; Auto with real.
+Apply imp_not_Req; Right.
+Red; Apply Rlt_trans with r2 := x; Auto with real.
+Qed.
+Hints Resolve Rlt_Rinv_R1 :real.
+
+(*********************************************************)
+(** Greater *)
+(*********************************************************)
+
+(**********)
+Lemma Rge_ge_eq:(r1,r2:R)``r1 >= r2`` -> ``r2 >= r1`` -> r1==r2.
+Intros; Apply Rle_antisym; Auto with real.
+Qed.
+
+(**********)
+Lemma Rlt_not_ge:(r1,r2:R)~(``r1<r2``)->``r1>=r2``.
+Intros; Unfold Rge; Elim (total_order r1 r2); Intro.
+Absurd ``r1<r2``; Trivial.
+Case H0; Auto.
+Qed.
+
+(**********)
+Lemma Rnot_lt_le:(r1,r2:R)~(``r1<r2``)->``r2<=r1``.
+Intros; Apply Rge_le; Apply Rlt_not_ge; Assumption.
+Qed.
+
+(**********)
+Lemma Rgt_not_le:(r1,r2:R)~(``r1>r2``)->``r1<=r2``.
+Intros r1 r2 H; Apply Rge_le.
+Exact (Rlt_not_ge r2 r1 H).
+Qed.
+
+(**********)
+Lemma Rgt_ge:(r1,r2:R)``r1>r2`` -> ``r1 >= r2``.
+Red; Auto with real.
+Qed.
+
+V7only [
+(**********)
+Lemma Rlt_sym:(r1,r2:R)``r1<r2`` <-> ``r2>r1``.
+Split; Unfold Rgt; Auto with real.
+Qed.
+
+(**********)
+Lemma Rle_sym1:(r1,r2:R)``r1<=r2``->``r2>=r1``.
+Proof Rle_ge.
+
+Notation "'Rle_sym2' a b" := (Rge_le b a)
+ (at level 10, a,b at next level).
+Notation "'Rle_sym2' a" := [b:R](Rge_le b a)
+ (at level 10, a at next level).
+Notation Rle_sym2 := Rge_le.
+(*
+(**********)
+Lemma Rle_sym2:(r1,r2:R)``r2>=r1`` -> ``r1<=r2``.
+Proof [r1,r2](Rge_le r2 r1).
+*)
+
+(**********)
+Lemma Rle_sym:(r1,r2:R)``r1<=r2``<->``r2>=r1``.
+Split; Auto with real.
+Qed.
+].
+
+(**********)
+Lemma Rge_gt_trans:(r1,r2,r3:R)``r1>=r2``->``r2>r3``->``r1>r3``.
+Unfold Rgt; Intros; Apply Rlt_le_trans with r2; Auto with real.
+Qed.
+
+(**********)
+Lemma Rgt_ge_trans:(r1,r2,r3:R)``r1>r2`` -> ``r2>=r3`` -> ``r1>r3``.
+Unfold Rgt; Intros; Apply Rle_lt_trans with r2; Auto with real.
+Qed.
+
+(**********)
+Lemma Rgt_trans:(r1,r2,r3:R)``r1>r2`` -> ``r2>r3`` -> ``r1>r3``.
+Unfold Rgt; Intros; Apply Rlt_trans with r2; Auto with real.
+Qed.
+
+(**********)
+Lemma Rge_trans:(r1,r2,r3:R)``r1>=r2`` -> ``r2>=r3`` -> ``r1>=r3``.
+Intros; Apply Rle_ge.
+Apply Rle_trans with r2; Auto with real.
+Qed.
+
+(**********)
+Lemma Rlt_r_plus_R1:(r:R)``0<=r`` -> ``0<r+1``.
+Intros.
+Apply Rlt_le_trans with ``1``; Auto with real.
+Pattern 1 ``1``; Replace ``1`` with ``0+1``; Auto with real.
+Qed.
+Hints Resolve Rlt_r_plus_R1: real.
+
+(**********)
+Lemma Rlt_r_r_plus_R1:(r:R)``r<r+1``.
+Intros.
+Pattern 1 r; Replace r with ``r+0``; Auto with real.
+Qed.
+Hints Resolve Rlt_r_r_plus_R1: real.
+
+(**********)
+Lemma tech_Rgt_minus:(r1,r2:R)``0<r2``->``r1>r1-r2``.
+Red; Unfold Rminus; Intros.
+Pattern 2 r1; Replace r1 with ``r1+0``; Auto with real.
+Qed.
+
+(***********)
+Lemma Rgt_plus_plus_r:(r,r1,r2:R)``r1>r2``->``r+r1 > r+r2``.
+Unfold Rgt; Auto with real.
+Qed.
+Hints Resolve Rgt_plus_plus_r : real.
+
+(***********)
+Lemma Rgt_r_plus_plus:(r,r1,r2:R)``r+r1 > r+r2`` -> ``r1 > r2``.
+Unfold Rgt; Intros; Apply (Rlt_anti_compatibility r r2 r1 H).
+Qed.
+
+(***********)
+Lemma Rge_plus_plus_r:(r,r1,r2:R)``r1>=r2`` -> ``r+r1 >= r+r2``.
+Intros; Apply Rle_ge; Auto with real.
+Qed.
+Hints Resolve Rge_plus_plus_r : real.
+
+(***********)
+Lemma Rge_r_plus_plus:(r,r1,r2:R)``r+r1 >= r+r2`` -> ``r1>=r2``.
+Intros; Apply Rle_ge; Apply Rle_anti_compatibility with r; Auto with real.
+Qed.
+
+(***********)
+Lemma Rmult_ge_compat_r:
+ (z,x,y:R) ``z>=0`` -> ``x>=y`` -> ``x*z >= y*z``.
+Intros z x y; Intros; Apply Rle_ge; Apply Rle_monotony_r; Apply Rge_le; Assumption.
+Qed.
+
+V7only [
+Notation "'Rge_monotony' a b c" := (Rmult_ge_compat_r c a b)
+ (at level 10, a,b,c at level 9, only parsing).
+Notation Rge_monotony := Rmult_ge_compat_r.
+].
+
+(***********)
+Lemma Rgt_minus:(r1,r2:R)``r1>r2`` -> ``r1-r2 > 0``.
+Intros; Replace ``0`` with ``r2-r2``; Auto with real.
+Unfold Rgt Rminus; Auto with real.
+Qed.
+
+(*********)
+Lemma minus_Rgt:(r1,r2:R)``r1-r2 > 0`` -> ``r1>r2``.
+Intros; Replace r2 with ``r2+0``; Auto with real.
+Intros; Replace r1 with ``r2+(r1-r2)``; Auto with real.
+Qed.
+
+(**********)
+Lemma Rge_minus:(r1,r2:R)``r1>=r2`` -> ``r1-r2 >= 0``.
+Unfold Rge; Intros; Elim H; Intro.
+Left; Apply (Rgt_minus r1 r2 H0).
+Right; Apply (eq_Rminus r1 r2 H0).
+Qed.
+
+(*********)
+Lemma minus_Rge:(r1,r2:R)``r1-r2 >= 0`` -> ``r1>=r2``.
+Intros; Replace r2 with ``r2+0``; Auto with real.
+Intros; Replace r1 with ``r2+(r1-r2)``; Auto with real.
+Qed.
+
+
+(*********)
+Lemma Rmult_gt:(r1,r2:R)``r1>0`` -> ``r2>0`` -> ``r1*r2>0``.
+Unfold Rgt;Intros.
+Replace ``0`` with ``0*r2``; Auto with real.
+Qed.
+
+(*********)
+Lemma Rmult_lt_pos:(x,y:R)``0<x`` -> ``0<y`` -> ``0<x*y``.
+Proof Rmult_gt.
+
+(***********)
+Lemma Rplus_eq_R0_l:(a,b:R)``0<=a`` -> ``0<=b`` -> ``a+b==0`` -> ``a==0``.
+Intros a b [H|H] H0 H1; Auto with real.
+Absurd ``0<a+b``.
+Rewrite H1; Auto with real.
+Replace ``0`` with ``0+0``; Auto with real.
+Qed.
+
+
+Lemma Rplus_eq_R0
+ :(a,b:R)``0<=a`` -> ``0<=b`` -> ``a+b==0`` -> ``a==0``/\``b==0``.
+Intros a b; Split.
+Apply Rplus_eq_R0_l with b; Auto with real.
+Apply Rplus_eq_R0_l with a; Auto with real.
+Rewrite Rplus_sym; Auto with real.
+Qed.
+
+
+(***********)
+Lemma Rplus_Rsr_eq_R0_l:(a,b:R)``(Rsqr a)+(Rsqr b)==0``->``a==0``.
+Intros a b; Intros; Apply Rsqr_r_R0; Apply Rplus_eq_R0_l with (Rsqr b); Auto with real.
+Qed.
+
+Lemma Rplus_Rsr_eq_R0:(a,b:R)``(Rsqr a)+(Rsqr b)==0``->``a==0``/\``b==0``.
+Intros a b; Split.
+Apply Rplus_Rsr_eq_R0_l with b; Auto with real.
+Apply Rplus_Rsr_eq_R0_l with a; Auto with real.
+Rewrite Rplus_sym; Auto with real.
+Qed.
+
+
+(**********************************************************)
+(** Injection from [N] to [R] *)
+(**********************************************************)
+
+(**********)
+Lemma S_INR:(n:nat)(INR (S n))==``(INR n)+1``.
+Intro; Case n; Auto with real.
+Qed.
+
+(**********)
+Lemma S_O_plus_INR:(n:nat)
+ (INR (plus (S O) n))==``(INR (S O))+(INR n)``.
+Intro; Simpl; Case n; Intros; Auto with real.
+Qed.
+
+(**********)
+Lemma plus_INR:(n,m:nat)(INR (plus n m))==``(INR n)+(INR m)``.
+Intros n m; Induction n.
+Simpl; Auto with real.
+Replace (plus (S n) m) with (S (plus n m)); Auto with arith.
+Repeat Rewrite S_INR.
+Rewrite Hrecn; Ring.
+Qed.
+
+(**********)
+Lemma minus_INR:(n,m:nat)(le m n)->(INR (minus n m))==``(INR n)-(INR m)``.
+Intros n m le; Pattern m n; Apply le_elim_rel; Auto with real.
+Intros; Rewrite <- minus_n_O; Auto with real.
+Intros; Repeat Rewrite S_INR; Simpl.
+Rewrite H0; Ring.
+Qed.
+
+(*********)
+Lemma mult_INR:(n,m:nat)(INR (mult n m))==(Rmult (INR n) (INR m)).
+Intros n m; Induction n.
+Simpl; Auto with real.
+Intros; Repeat Rewrite S_INR; Simpl.
+Rewrite plus_INR; Rewrite Hrecn; Ring.
+Qed.
+
+Hints Resolve plus_INR minus_INR mult_INR : real.
+
+(*********)
+Lemma lt_INR_0:(n:nat)(lt O n)->``0 < (INR n)``.
+Induction 1; Intros; Auto with real.
+Rewrite S_INR; Auto with real.
+Qed.
+Hints Resolve lt_INR_0: real.
+
+Lemma lt_INR:(n,m:nat)(lt n m)->``(INR n) < (INR m)``.
+Induction 1; Intros; Auto with real.
+Rewrite S_INR; Auto with real.
+Rewrite S_INR; Apply Rlt_trans with (INR m0); Auto with real.
+Qed.
+Hints Resolve lt_INR: real.
+
+Lemma INR_lt_1:(n:nat)(lt (S O) n)->``1 < (INR n)``.
+Intros;Replace ``1`` with (INR (S O));Auto with real.
+Qed.
+Hints Resolve INR_lt_1: real.
+
+(**********)
+Lemma INR_pos : (p:positive)``0<(INR (convert p))``.
+Intro; Apply lt_INR_0.
+Simpl; Auto with real.
+Apply compare_convert_O.
+Qed.
+Hints Resolve INR_pos : real.
+
+(**********)
+Lemma pos_INR:(n:nat)``0 <= (INR n)``.
+Intro n; Case n.
+Simpl; Auto with real.
+Auto with arith real.
+Qed.
+Hints Resolve pos_INR: real.
+
+Lemma INR_lt:(n,m:nat)``(INR n) < (INR m)``->(lt n m).
+Double Induction n m;Intros.
+Simpl;ElimType False;Apply (Rlt_antirefl R0);Auto.
+Auto with arith.
+Generalize (pos_INR (S n0));Intro;Cut (INR O)==R0;
+ [Intro H2;Rewrite H2 in H0;Idtac|Simpl;Trivial].
+Generalize (Rle_lt_trans ``0`` (INR (S n0)) ``0`` H1 H0);Intro;
+ ElimType False;Apply (Rlt_antirefl R0);Auto.
+Do 2 Rewrite S_INR in H1;Cut ``(INR n1) < (INR n0)``.
+Intro H2;Generalize (H0 n0 H2);Intro;Auto with arith.
+Apply (Rlt_anti_compatibility ``1`` (INR n1) (INR n0)).
+Rewrite Rplus_sym;Rewrite (Rplus_sym ``1`` (INR n0));Trivial.
+Qed.
+Hints Resolve INR_lt: real.
+
+(*********)
+Lemma le_INR:(n,m:nat)(le n m)->``(INR n)<=(INR m)``.
+Induction 1; Intros; Auto with real.
+Rewrite S_INR.
+Apply Rle_trans with (INR m0); Auto with real.
+Qed.
+Hints Resolve le_INR: real.
+
+(**********)
+Lemma not_INR_O:(n:nat)``(INR n)<>0``->~n=O.
+Red; Intros n H H1.
+Apply H.
+Rewrite H1; Trivial.
+Qed.
+Hints Immediate not_INR_O : real.
+
+(**********)
+Lemma not_O_INR:(n:nat)~n=O->``(INR n)<>0``.
+Intro n; Case n.
+Intro; Absurd (0)=(0); Trivial.
+Intros; Rewrite S_INR.
+Apply Rgt_not_eq; Red; Auto with real.
+Qed.
+Hints Resolve not_O_INR : real.
+
+Lemma not_nm_INR:(n,m:nat)~n=m->``(INR n)<>(INR m)``.
+Intros n m H; Case (le_or_lt n m); Intros H1.
+Case (le_lt_or_eq ? ? H1); Intros H2.
+Apply imp_not_Req; Auto with real.
+ElimType False;Auto.
+Apply sym_not_eqT; Apply imp_not_Req; Auto with real.
+Qed.
+Hints Resolve not_nm_INR : real.
+
+Lemma INR_eq: (n,m:nat)(INR n)==(INR m)->n=m.
+Intros;Case (le_or_lt n m); Intros H1.
+Case (le_lt_or_eq ? ? H1); Intros H2;Auto.
+Cut ~n=m.
+Intro H3;Generalize (not_nm_INR n m H3);Intro H4;
+ ElimType False;Auto.
+Omega.
+Symmetry;Cut ~m=n.
+Intro H3;Generalize (not_nm_INR m n H3);Intro H4;
+ ElimType False;Auto.
+Omega.
+Qed.
+Hints Resolve INR_eq : real.
+
+Lemma INR_le: (n, m : nat) (Rle (INR n) (INR m)) -> (le n m).
+Intros;Elim H;Intro.
+Generalize (INR_lt n m H0);Intro;Auto with arith.
+Generalize (INR_eq n m H0);Intro;Rewrite H1;Auto.
+Qed.
+Hints Resolve INR_le : real.
+
+Lemma not_1_INR:(n:nat)~n=(S O)->``(INR n)<>1``.
+Replace ``1`` with (INR (S O)); Auto with real.
+Qed.
+Hints Resolve not_1_INR : real.
+
+(**********************************************************)
+(** Injection from [Z] to [R] *)
+(**********************************************************)
+
+V7only [
+(**********)
+Definition Z_of_nat := inject_nat.
+Notation INZ:=Z_of_nat.
+].
+
+(**********)
+Lemma IZN:(z:Z)(`0<=z`)->(Ex [m:nat] z=(INZ m)).
+Intros z; Unfold INZ; Apply inject_nat_complete; Assumption.
+Qed.
+
+(**********)
+Lemma INR_IZR_INZ:(n:nat)(INR n)==(IZR (INZ n)).
+Induction n; Auto with real.
+Intros; Simpl; Rewrite bij1; Auto with real.
+Qed.
+
+Lemma plus_IZR_NEG_POS :
+ (p,q:positive)(IZR `(POS p)+(NEG q)`)==``(IZR (POS p))+(IZR (NEG q))``.
+Intros.
+Case (lt_eq_lt_dec (convert p) (convert q)).
+Intros [H | H]; Simpl.
+Rewrite convert_compare_INFERIEUR; Simpl; Trivial.
+Rewrite (true_sub_convert q p).
+Rewrite minus_INR; Auto with arith; Ring.
+Apply ZC2; Apply convert_compare_INFERIEUR; Trivial.
+Rewrite (convert_intro p q); Trivial.
+Rewrite convert_compare_EGAL; Simpl; Auto with real.
+Intro H; Simpl.
+Rewrite convert_compare_SUPERIEUR; Simpl; Auto with arith.
+Rewrite (true_sub_convert p q).
+Rewrite minus_INR; Auto with arith; Ring.
+Apply ZC2; Apply convert_compare_INFERIEUR; Trivial.
+Qed.
+
+(**********)
+Lemma plus_IZR:(z,t:Z)(IZR `z+t`)==``(IZR z)+(IZR t)``.
+Intro z; NewDestruct z; Intro t; NewDestruct t; Intros; Auto with real.
+Simpl; Intros; Rewrite convert_add; Auto with real.
+Apply plus_IZR_NEG_POS.
+Rewrite Zplus_sym; Rewrite Rplus_sym; Apply plus_IZR_NEG_POS.
+Simpl; Intros; Rewrite convert_add; Rewrite plus_INR; Auto with real.
+Qed.
+
+(**********)
+Lemma mult_IZR:(z,t:Z)(IZR `z*t`)==``(IZR z)*(IZR t)``.
+Intros z t; Case z; Case t; Simpl; Auto with real.
+Intros t1 z1; Rewrite times_convert; Auto with real.
+Intros t1 z1; Rewrite times_convert; Auto with real.
+Rewrite Rmult_sym.
+Rewrite Ropp_mul1; Auto with real.
+Apply eq_Ropp; Rewrite mult_sym; Auto with real.
+Intros t1 z1; Rewrite times_convert; Auto with real.
+Rewrite Ropp_mul1; Auto with real.
+Intros t1 z1; Rewrite times_convert; Auto with real.
+Rewrite Ropp_mul2; Auto with real.
+Qed.
+
+(**********)
+Lemma Ropp_Ropp_IZR:(z:Z)(IZR (`-z`))==``-(IZR z)``.
+Intro z; Case z; Simpl; Auto with real.
+Qed.
+
+(**********)
+Lemma Z_R_minus:(z1,z2:Z)``(IZR z1)-(IZR z2)``==(IZR `z1-z2`).
+Intros z1 z2; Unfold Rminus; Unfold Zminus.
+Rewrite <-(Ropp_Ropp_IZR z2); Symmetry; Apply plus_IZR.
+Qed.
+
+(**********)
+Lemma lt_O_IZR:(z:Z)``0 < (IZR z)``->`0<z`.
+Intro z; Case z; Simpl; Intros.
+Absurd ``0<0``; Auto with real.
+Unfold Zlt; Simpl; Trivial.
+Case Rlt_le_not with 1:=H.
+Replace ``0`` with ``-0``; Auto with real.
+Qed.
+
+(**********)
+Lemma lt_IZR:(z1,z2:Z)``(IZR z1)<(IZR z2)``->`z1<z2`.
+Intros z1 z2 H; Apply Zlt_O_minus_lt.
+Apply lt_O_IZR.
+Rewrite <- Z_R_minus.
+Exact (Rgt_minus (IZR z2) (IZR z1) H).
+Qed.
+
+(**********)
+Lemma eq_IZR_R0:(z:Z)``(IZR z)==0``->`z=0`.
+Intro z; NewDestruct z; Simpl; Intros; Auto with zarith.
+Case (Rlt_not_eq ``0`` (INR (convert p))); Auto with real.
+Case (Rlt_not_eq ``-(INR (convert p))`` ``0`` ); Auto with real.
+Apply Rgt_RoppO. Unfold Rgt; Apply INR_pos.
+Qed.
+
+(**********)
+Lemma eq_IZR:(z1,z2:Z)(IZR z1)==(IZR z2)->z1=z2.
+Intros z1 z2 H;Generalize (eq_Rminus (IZR z1) (IZR z2) H);
+ Rewrite (Z_R_minus z1 z2);Intro;Generalize (eq_IZR_R0 `z1-z2` H0);
+ Intro;Omega.
+Qed.
+
+(**********)
+Lemma not_O_IZR:(z:Z)`z<>0`->``(IZR z)<>0``.
+Intros z H; Red; Intros H0; Case H.
+Apply eq_IZR; Auto.
+Qed.
+
+(*********)
+Lemma le_O_IZR:(z:Z)``0<= (IZR z)``->`0<=z`.
+Unfold Rle; Intros z [H|H].
+Red;Intro;Apply (Zlt_le_weak `0` z (lt_O_IZR z H)); Assumption.
+Rewrite (eq_IZR_R0 z); Auto with zarith real.
+Qed.
+
+(**********)
+Lemma le_IZR:(z1,z2:Z)``(IZR z1)<=(IZR z2)``->`z1<=z2`.
+Unfold Rle; Intros z1 z2 [H|H].
+Apply (Zlt_le_weak z1 z2); Auto with real.
+Apply lt_IZR; Trivial.
+Rewrite (eq_IZR z1 z2); Auto with zarith real.
+Qed.
+
+(**********)
+Lemma le_IZR_R1:(z:Z)``(IZR z)<=1``-> `z<=1`.
+Pattern 1 ``1``; Replace ``1`` with (IZR `1`); Intros; Auto.
+Apply le_IZR; Trivial.
+Qed.
+
+(**********)
+Lemma IZR_ge: (m,n:Z) `m>= n` -> ``(IZR m)>=(IZR n)``.
+Intros m n H; Apply Rlt_not_ge;Red;Intro.
+Generalize (lt_IZR m n H0); Intro; Omega.
+Qed.
+
+Lemma IZR_le: (m,n:Z) `m<= n` -> ``(IZR m)<=(IZR n)``.
+Intros m n H;Apply Rgt_not_le;Red;Intro.
+Unfold Rgt in H0;Generalize (lt_IZR n m H0); Intro; Omega.
+Qed.
+
+Lemma IZR_lt: (m,n:Z) `m< n` -> ``(IZR m)<(IZR n)``.
+Intros m n H;Cut `m<=n`.
+Intro H0;Elim (IZR_le m n H0);Intro;Auto.
+Generalize (eq_IZR m n H1);Intro;ElimType False;Omega.
+Omega.
+Qed.
+
+Lemma one_IZR_lt1 : (z:Z)``-1<(IZR z)<1``->`z=0`.
+Intros z (H1,H2).
+Apply Zle_antisym.
+Apply Zlt_n_Sm_le; Apply lt_IZR; Trivial.
+Replace `0` with (Zs `-1`); Trivial.
+Apply Zlt_le_S; Apply lt_IZR; Trivial.
+Qed.
+
+Lemma one_IZR_r_R1
+ : (r:R)(z,x:Z)``r<(IZR z)<=r+1``->``r<(IZR x)<=r+1``->z=x.
+Intros r z x (H1,H2) (H3,H4).
+Cut `z-x=0`; Auto with zarith.
+Apply one_IZR_lt1.
+Rewrite <- Z_R_minus; Split.
+Replace ``-1`` with ``r-(r+1)``.
+Unfold Rminus; Apply Rplus_lt_le_lt; Auto with real.
+Ring.
+Replace ``1`` with ``(r+1)-r``.
+Unfold Rminus; Apply Rplus_le_lt_lt; Auto with real.
+Ring.
+Qed.
+
+
+(**********)
+Lemma single_z_r_R1:
+ (r:R)(z,x:Z)``r<(IZR z)``->``(IZR z)<=r+1``->``r<(IZR x)``->
+ ``(IZR x)<=r+1``->z=x.
+Intros; Apply one_IZR_r_R1 with r; Auto.
+Qed.
+
+(**********)
+Lemma tech_single_z_r_R1
+ :(r:R)(z:Z)``r<(IZR z)``->``(IZR z)<=r+1``
+ -> (Ex [s:Z] (~s=z/\``r<(IZR s)``/\``(IZR s)<=r+1``))->False.
+Intros r z H1 H2 (s, (H3,(H4,H5))).
+Apply H3; Apply single_z_r_R1 with r; Trivial.
+Qed.
+
+(*****************************************************************)
+(** Definitions of new types *)
+(*****************************************************************)
+
+Record nonnegreal : Type := mknonnegreal {
+nonneg :> R;
+cond_nonneg : ``0<=nonneg`` }.
+
+Record posreal : Type := mkposreal {
+pos :> R;
+cond_pos : ``0<pos`` }.
+
+Record nonposreal : Type := mknonposreal {
+nonpos :> R;
+cond_nonpos : ``nonpos<=0`` }.
+
+Record negreal : Type := mknegreal {
+neg :> R;
+cond_neg : ``neg<0`` }.
+
+Record nonzeroreal : Type := mknonzeroreal {
+nonzero :> R;
+cond_nonzero : ~``nonzero==0`` }.
+
+(**********)
+Lemma prod_neq_R0 : (x,y:R) ~``x==0``->~``y==0``->~``x*y==0``.
+Intros x y; Intros; Red; Intro; Generalize (without_div_Od x y H1); Intro; Elim H2; Intro; [Rewrite H3 in H; Elim H | Rewrite H3 in H0; Elim H0]; Reflexivity.
+Qed.
+
+(*********)
+Lemma Rmult_le_pos : (x,y:R) ``0<=x`` -> ``0<=y`` -> ``0<=x*y``.
+Intros x y H H0; Rewrite <- (Rmult_Ol x); Rewrite <- (Rmult_sym x); Apply (Rle_monotony x R0 y H H0).
+Qed.
+
+Lemma double : (x:R) ``2*x==x+x``.
+Intro; Ring.
+Qed.
+
+Lemma double_var : (x:R) ``x == x/2 + x/2``.
+Intro; Rewrite <- double; Unfold Rdiv; Rewrite <- Rmult_assoc; Symmetry; Apply Rinv_r_simpl_m.
+Replace ``2`` with (INR (2)); [Apply not_O_INR; Discriminate | Unfold INR; Ring].
+Qed.
+
+(**********************************************************)
+(** Other rules about < and <= *)
+(**********************************************************)
+
+Lemma gt0_plus_gt0_is_gt0 : (x,y:R) ``0<x`` -> ``0<y`` -> ``0<x+y``.
+Intros x y; Intros; Apply Rlt_trans with x; [Assumption | Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rlt_compatibility; Assumption].
+Qed.
+
+Lemma ge0_plus_gt0_is_gt0 : (x,y:R) ``0<=x`` -> ``0<y`` -> ``0<x+y``.
+Intros x y; Intros; Apply Rle_lt_trans with x; [Assumption | Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rlt_compatibility; Assumption].
+Qed.
+
+Lemma gt0_plus_ge0_is_gt0 : (x,y:R) ``0<x`` -> ``0<=y`` -> ``0<x+y``.
+Intros x y; Intros; Rewrite <- Rplus_sym; Apply ge0_plus_gt0_is_gt0; Assumption.
+Qed.
+
+Lemma ge0_plus_ge0_is_ge0 : (x,y:R) ``0<=x`` -> ``0<=y`` -> ``0<=x+y``.
+Intros x y; Intros; Apply Rle_trans with x; [Assumption | Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption].
+Qed.
+
+Lemma plus_le_is_le : (x,y,z:R) ``0<=y`` -> ``x+y<=z`` -> ``x<=z``.
+Intros x y z; Intros; Apply Rle_trans with ``x+y``; [Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption | Assumption].
+Qed.
+
+Lemma plus_lt_is_lt : (x,y,z:R) ``0<=y`` -> ``x+y<z`` -> ``x<z``.
+Intros x y z; Intros; Apply Rle_lt_trans with ``x+y``; [Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption | Assumption].
+Qed.
+
+Lemma Rmult_lt2 : (r1,r2,r3,r4:R) ``0<=r1`` -> ``0<=r3`` -> ``r1<r2`` -> ``r3<r4`` -> ``r1*r3<r2*r4``.
+Intros; Apply Rle_lt_trans with ``r2*r3``; [Apply Rle_monotony_r; [Assumption | Left; Assumption] | Apply Rlt_monotony; [Apply Rle_lt_trans with r1; Assumption | Assumption]].
+Qed.
+
+Lemma le_epsilon : (x,y:R) ((eps : R) ``0<eps``->``x<=y+eps``) -> ``x<=y``.
+Intros x y; Intros; Elim (total_order x y); Intro.
+Left; Assumption.
+Elim H0; Intro.
+Right; Assumption.
+Clear H0; Generalize (Rgt_minus x y H1); Intro H2; Change ``0<x-y`` in H2.
+Cut ``0<2``.
+Intro.
+Generalize (Rmult_lt_pos ``x-y`` ``/2`` H2 (Rlt_Rinv ``2`` H0)); Intro H3; Generalize (H ``(x-y)*/2`` H3); Replace ``y+(x-y)*/2`` with ``(y+x)*/2``.
+Intro H4; Generalize (Rle_monotony ``2`` x ``(y+x)*/2`` (Rlt_le ``0`` ``2`` H0) H4); Rewrite <- (Rmult_sym ``((y+x)*/2)``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r; Replace ``2*x`` with ``x+x``.
+Rewrite (Rplus_sym y); Intro H5; Apply Rle_anti_compatibility with x; Assumption.
+Ring.
+Replace ``2`` with (INR (S (S O))); [Apply not_O_INR; Discriminate | Ring].
+Pattern 2 y; Replace y with ``y/2+y/2``.
+Unfold Rminus Rdiv.
+Repeat Rewrite Rmult_Rplus_distrl.
+Ring.
+Cut (z:R) ``2*z == z + z``.
+Intro.
+Rewrite <- (H4 ``y/2``).
+Unfold Rdiv.
+Rewrite <- Rmult_assoc; Apply Rinv_r_simpl_m.
+Replace ``2`` with (INR (2)).
+Apply not_O_INR.
+Discriminate.
+Unfold INR; Reflexivity.
+Intro; Ring.
+Cut ~(O=(2)); [Intro H0; Generalize (lt_INR_0 (2) (neq_O_lt (2) H0)); Unfold INR; Intro; Assumption | Discriminate].
+Qed.
+
+(**********)
+Lemma complet_weak : (E:R->Prop) (bound E) -> (ExT [x:R] (E x)) -> (ExT [m:R] (is_lub E m)).
+Intros; Elim (complet E H H0); Intros; Split with x; Assumption.
+Qed.