diff options
Diffstat (limited to 'theories7/Reals/PSeries_reg.v')
-rw-r--r-- | theories7/Reals/PSeries_reg.v | 194 |
1 files changed, 194 insertions, 0 deletions
diff --git a/theories7/Reals/PSeries_reg.v b/theories7/Reals/PSeries_reg.v new file mode 100644 index 00000000..68645379 --- /dev/null +++ b/theories7/Reals/PSeries_reg.v @@ -0,0 +1,194 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: PSeries_reg.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*) + +Require Rbase. +Require Rfunctions. +Require SeqSeries. +Require Ranalysis1. +Require Max. +Require Even. +V7only [Import R_scope.]. Open Local Scope R_scope. + +Definition Boule [x:R;r:posreal] : R -> Prop := [y:R]``(Rabsolu (y-x))<r``. + +(* Uniform convergence *) +Definition CVU [fn:nat->R->R;f:R->R;x:R;r:posreal] : Prop := (eps:R)``0<eps``->(EX N:nat | (n:nat;y:R) (le N n)->(Boule x r y)->``(Rabsolu ((f y)-(fn n y)))<eps``). + +(* Normal convergence *) +Definition CVN_r [fn:nat->R->R;r:posreal] : Type := (SigT ? [An:nat->R](sigTT R [l:R]((Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu (An k)) n) l)/\((n:nat)(y:R)(Boule R0 r y)->(Rle (Rabsolu (fn n y)) (An n)))))). + +Definition CVN_R [fn:nat->R->R] : Type := (r:posreal) (CVN_r fn r). + +Definition SFL [fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))] : R-> R := [y:R](Cases (cv y) of (existTT a b) => a end). + +(* In a complete space, normal convergence implies uniform convergence *) +Lemma CVN_CVU : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l));r:posreal) (CVN_r fn r) -> (CVU [n:nat](SP fn n) (SFL fn cv) ``0`` r). +Intros; Unfold CVU; Intros. +Unfold CVN_r in X. +Elim X; Intros An X0. +Elim X0; Intros s H0. +Elim H0; Intros. +Cut (Un_cv [n:nat](Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s) R0). +Intro; Unfold Un_cv in H3. +Elim (H3 eps H); Intros N0 H4. +Exists N0; Intros. +Apply Rle_lt_trans with (Rabsolu (Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s)). +Rewrite <- (Rabsolu_Ropp (Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s)); Rewrite Ropp_distr3; Rewrite (Rabsolu_right (Rminus s (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n))). +EApply sum_maj1. +Unfold SFL; Case (cv y); Intro. +Trivial. +Apply H1. +Intro; Elim H0; Intros. +Rewrite (Rabsolu_right (An n0)). +Apply H8; Apply H6. +Apply Rle_sym1; Apply Rle_trans with (Rabsolu (fn n0 y)). +Apply Rabsolu_pos. +Apply H8; Apply H6. +Apply Rle_sym1; Apply Rle_anti_compatibility with (sum_f_R0 [k:nat](Rabsolu (An k)) n). +Rewrite Rplus_Or; Unfold Rminus; Rewrite (Rplus_sym s); Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Ol; Apply sum_incr. +Apply H1. +Intro; Apply Rabsolu_pos. +Unfold R_dist in H4; Unfold Rminus in H4; Rewrite Ropp_O in H4. +Assert H7 := (H4 n H5). +Rewrite Rplus_Or in H7; Apply H7. +Unfold Un_cv in H1; Unfold Un_cv; Intros. +Elim (H1? H3); Intros. +Exists x; Intros. +Unfold R_dist; Unfold R_dist in H4. +Rewrite minus_R0; Apply H4; Assumption. +Qed. + +(* Each limit of a sequence of functions which converges uniformly is continue *) +Lemma CVU_continuity : (fn:nat->R->R;f:R->R;x:R;r:posreal) (CVU fn f x r) -> ((n:nat)(y:R) (Boule x r y)->(continuity_pt (fn n) y)) -> ((y:R) (Boule x r y) -> (continuity_pt f y)). +Intros; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros. +Unfold CVU in H. +Cut ``0<eps/3``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]]. +Elim (H ? H3); Intros N0 H4. +Assert H5 := (H0 N0 y H1). +Cut (EXT del : posreal | (h:R) ``(Rabsolu h)<del`` -> (Boule x r ``y+h``) ). +Intro. +Elim H6; Intros del1 H7. +Unfold continuity_pt in H5; Unfold continue_in in H5; Unfold limit1_in in H5; Unfold limit_in in H5; Simpl in H5; Unfold R_dist in H5. +Elim (H5 ? H3); Intros del2 H8. +Pose del := (Rmin del1 del2). +Exists del; Intros. +Split. +Unfold del; Unfold Rmin; Case (total_order_Rle del1 del2); Intro. +Apply (cond_pos del1). +Elim H8; Intros; Assumption. +Intros; Apply Rle_lt_trans with ``(Rabsolu ((f x0)-(fn N0 x0)))+(Rabsolu ((fn N0 x0)-(f y)))``. +Replace ``(f x0)-(f y)`` with ``((f x0)-(fn N0 x0))+((fn N0 x0)-(f y))``; [Apply Rabsolu_triang | Ring]. +Apply Rle_lt_trans with ``(Rabsolu ((f x0)-(fn N0 x0)))+(Rabsolu ((fn N0 x0)-(fn N0 y)))+(Rabsolu ((fn N0 y)-(f y)))``. +Rewrite Rplus_assoc; Apply Rle_compatibility. +Replace ``(fn N0 x0)-(f y)`` with ``((fn N0 x0)-(fn N0 y))+((fn N0 y)-(f y))``; [Apply Rabsolu_triang | Ring]. +Replace ``eps`` with ``eps/3+eps/3+eps/3``. +Repeat Apply Rplus_lt. +Apply H4. +Apply le_n. +Replace x0 with ``y+(x0-y)``; [Idtac | Ring]; Apply H7. +Elim H9; Intros. +Apply Rlt_le_trans with del. +Assumption. +Unfold del; Apply Rmin_l. +Elim H8; Intros. +Apply H11. +Split. +Elim H9; Intros; Assumption. +Elim H9; Intros; Apply Rlt_le_trans with del. +Assumption. +Unfold del; Apply Rmin_r. +Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply H4. +Apply le_n. +Assumption. +Apply r_Rmult_mult with ``3``. +Do 2 Rewrite Rmult_Rplus_distr; Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m. +Ring. +DiscrR. +DiscrR. +Cut ``0<r-(Rabsolu (x-y))``. +Intro; Exists (mkposreal ? H6). +Simpl; Intros. +Unfold Boule; Replace ``y+h-x`` with ``h+(y-x)``; [Idtac | Ring]; Apply Rle_lt_trans with ``(Rabsolu h)+(Rabsolu (y-x))``. +Apply Rabsolu_triang. +Apply Rlt_anti_compatibility with ``-(Rabsolu (x-y))``. +Rewrite <- (Rabsolu_Ropp ``y-x``); Rewrite Ropp_distr3. +Replace ``-(Rabsolu (x-y))+r`` with ``r-(Rabsolu (x-y))``. +Replace ``-(Rabsolu (x-y))+((Rabsolu h)+(Rabsolu (x-y)))`` with (Rabsolu h). +Apply H7. +Ring. +Ring. +Unfold Boule in H1; Rewrite <- (Rabsolu_Ropp ``x-y``); Rewrite Ropp_distr3; Apply Rlt_anti_compatibility with ``(Rabsolu (y-x))``. +Rewrite Rplus_Or; Replace ``(Rabsolu (y-x))+(r-(Rabsolu (y-x)))`` with ``(pos r)``; [Apply H1 | Ring]. +Qed. + +(**********) +Lemma continuity_pt_finite_SF : (fn:nat->R->R;N:nat;x:R) ((n:nat)(le n N)->(continuity_pt (fn n) x)) -> (continuity_pt [y:R](sum_f_R0 [k:nat]``(fn k y)`` N) x). +Intros; Induction N. +Simpl; Apply (H O); Apply le_n. +Simpl; Replace [y:R](Rplus (sum_f_R0 [k:nat](fn k y) N) (fn (S N) y)) with (plus_fct [y:R](sum_f_R0 [k:nat](fn k y) N) [y:R](fn (S N) y)); [Idtac | Reflexivity]. +Apply continuity_pt_plus. +Apply HrecN. +Intros; Apply H. +Apply le_trans with N; [Assumption | Apply le_n_Sn]. +Apply (H (S N)); Apply le_n. +Qed. + +(* Continuity and normal convergence *) +Lemma SFL_continuity_pt : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l));r:posreal) (CVN_r fn r) -> ((n:nat)(y:R) (Boule ``0`` r y) -> (continuity_pt (fn n) y)) -> ((y:R) (Boule ``0`` r y) -> (continuity_pt (SFL fn cv) y)). +Intros; EApply CVU_continuity. +Apply CVN_CVU. +Apply X. +Intros; Unfold SP; Apply continuity_pt_finite_SF. +Intros; Apply H. +Apply H1. +Apply H0. +Qed. + +Lemma SFL_continuity : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))) (CVN_R fn) -> ((n:nat)(continuity (fn n))) -> (continuity (SFL fn cv)). +Intros; Unfold continuity; Intro. +Cut ``0<(Rabsolu x)+1``; [Intro | Apply ge0_plus_gt0_is_gt0; [Apply Rabsolu_pos | Apply Rlt_R0_R1]]. +Cut (Boule ``0`` (mkposreal ? H0) x). +Intro; EApply SFL_continuity_pt with (mkposreal ? H0). +Apply X. +Intros; Apply (H n y). +Apply H1. +Unfold Boule; Simpl; Rewrite minus_R0; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1. +Qed. + +(* As R is complete, normal convergence implies that (fn) is simply-uniformly convergent *) +Lemma CVN_R_CVS : (fn:nat->R->R) (CVN_R fn) -> ((x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))). +Intros; Apply R_complete. +Unfold SP; Pose An := [N:nat](fn N x). +Change (Cauchy_crit_series An). +Apply cauchy_abs. +Unfold Cauchy_crit_series; Apply CV_Cauchy. +Unfold CVN_R in X; Cut ``0<(Rabsolu x)+1``. +Intro; Assert H0 := (X (mkposreal ? H)). +Unfold CVN_r in H0; Elim H0; Intros Bn H1. +Elim H1; Intros l H2. +Elim H2; Intros. +Apply Rseries_CV_comp with Bn. +Intro; Split. +Apply Rabsolu_pos. +Unfold An; Apply H4; Unfold Boule; Simpl; Rewrite minus_R0. +Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1. +Apply existTT with l. +Cut (n:nat)``0<=(Bn n)``. +Intro; Unfold Un_cv in H3; Unfold Un_cv; Intros. +Elim (H3 ? H6); Intros. +Exists x0; Intros. +Replace (sum_f_R0 Bn n) with (sum_f_R0 [k:nat](Rabsolu (Bn k)) n). +Apply H7; Assumption. +Apply sum_eq; Intros; Apply Rabsolu_right; Apply Rle_sym1; Apply H5. +Intro; Apply Rle_trans with (Rabsolu (An n)). +Apply Rabsolu_pos. +Unfold An; Apply H4; Unfold Boule; Simpl; Rewrite minus_R0; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1. +Apply ge0_plus_gt0_is_gt0; [Apply Rabsolu_pos | Apply Rlt_R0_R1]. +Qed. |