diff options
Diffstat (limited to 'theories7/Reals/MVT.v')
-rw-r--r-- | theories7/Reals/MVT.v | 517 |
1 files changed, 0 insertions, 517 deletions
diff --git a/theories7/Reals/MVT.v b/theories7/Reals/MVT.v deleted file mode 100644 index eae414b1..00000000 --- a/theories7/Reals/MVT.v +++ /dev/null @@ -1,517 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: MVT.v,v 1.1.2.1 2004/07/16 19:31:32 herbelin Exp $ i*) - -Require Rbase. -Require Rfunctions. -Require Ranalysis1. -Require Rtopology. -V7only [Import R_scope.]. Open Local Scope R_scope. - -(* The Mean Value Theorem *) -Theorem MVT : (f,g:R->R;a,b:R;pr1:(c:R)``a<c<b``->(derivable_pt f c);pr2:(c:R)``a<c<b``->(derivable_pt g c)) ``a<b`` -> ((c:R)``a<=c<=b``->(continuity_pt f c)) -> ((c:R)``a<=c<=b``->(continuity_pt g c)) -> (EXT c : R | (EXT P : ``a<c<b`` | ``((g b)-(g a))*(derive_pt f c (pr1 c P))==((f b)-(f a))*(derive_pt g c (pr2 c P))``)). -Intros; Assert H2 := (Rlt_le ? ? H). -Pose h := [y:R]``((g b)-(g a))*(f y)-((f b)-(f a))*(g y)``. -Cut (c:R)``a<c<b``->(derivable_pt h c). -Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt h c)). -Intro; Assert H4 := (continuity_ab_maj h a b H2 H3). -Assert H5 := (continuity_ab_min h a b H2 H3). -Elim H4; Intros Mx H6. -Elim H5; Intros mx H7. -Cut (h a)==(h b). -Intro; Pose M := (h Mx); Pose m := (h mx). -Cut (c:R;P:``a<c<b``) (derive_pt h c (X c P))==``((g b)-(g a))*(derive_pt f c (pr1 c P))-((f b)-(f a))*(derive_pt g c (pr2 c P))``. -Intro; Case (Req_EM (h a) M); Intro. -Case (Req_EM (h a) m); Intro. -Cut ((c:R)``a<=c<=b``->(h c)==M). -Intro; Cut ``a<(a+b)/2<b``. -(*** h constant ***) -Intro; Exists ``(a+b)/2``. -Exists H13. -Apply Rminus_eq; Rewrite <- H9; Apply deriv_constant2 with a b. -Elim H13; Intros; Assumption. -Elim H13; Intros; Assumption. -Intros; Rewrite (H12 ``(a+b)/2``). -Apply H12; Split; Left; Assumption. -Elim H13; Intros; Split; Left; Assumption. -Split. -Apply Rlt_monotony_contra with ``2``. -Sup0. -Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply H. -DiscrR. -Apply Rlt_monotony_contra with ``2``. -Sup0. -Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Rewrite Rplus_sym; Rewrite double; Apply Rlt_compatibility; Apply H. -DiscrR. -Intros; Elim H6; Intros H13 _. -Elim H7; Intros H14 _. -Apply Rle_antisym. -Apply H13; Apply H12. -Rewrite H10 in H11; Rewrite H11; Apply H14; Apply H12. -Cut ``a<mx<b``. -(*** h admet un minimum global sur [a,b] ***) -Intro; Exists mx. -Exists H12. -Apply Rminus_eq; Rewrite <- H9; Apply deriv_minimum with a b. -Elim H12; Intros; Assumption. -Elim H12; Intros; Assumption. -Intros; Elim H7; Intros. -Apply H15; Split; Left; Assumption. -Elim H7; Intros _ H12; Elim H12; Intros; Split. -Inversion H13. -Apply H15. -Rewrite H15 in H11; Elim H11; Reflexivity. -Inversion H14. -Apply H15. -Rewrite H8 in H11; Rewrite <- H15 in H11; Elim H11; Reflexivity. -Cut ``a<Mx<b``. -(*** h admet un maximum global sur [a,b] ***) -Intro; Exists Mx. -Exists H11. -Apply Rminus_eq; Rewrite <- H9; Apply deriv_maximum with a b. -Elim H11; Intros; Assumption. -Elim H11; Intros; Assumption. -Intros; Elim H6; Intros; Apply H14. -Split; Left; Assumption. -Elim H6; Intros _ H11; Elim H11; Intros; Split. -Inversion H12. -Apply H14. -Rewrite H14 in H10; Elim H10; Reflexivity. -Inversion H13. -Apply H14. -Rewrite H8 in H10; Rewrite <- H14 in H10; Elim H10; Reflexivity. -Intros; Unfold h; Replace (derive_pt [y:R]``((g b)-(g a))*(f y)-((f b)-(f a))*(g y)`` c (X c P)) with (derive_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c (derivable_pt_minus ? ? ? (derivable_pt_mult ? ? ? (derivable_pt_const ``(g b)-(g a)`` c) (pr1 c P)) (derivable_pt_mult ? ? ? (derivable_pt_const ``(f b)-(f a)`` c) (pr2 c P)))); [Idtac | Apply pr_nu]. -Rewrite derive_pt_minus; Do 2 Rewrite derive_pt_mult; Do 2 Rewrite derive_pt_const; Do 2 Rewrite Rmult_Ol; Do 2 Rewrite Rplus_Ol; Reflexivity. -Unfold h; Ring. -Intros; Unfold h; Change (continuity_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c). -Apply continuity_pt_minus; Apply continuity_pt_mult. -Apply derivable_continuous_pt; Apply derivable_const. -Apply H0; Apply H3. -Apply derivable_continuous_pt; Apply derivable_const. -Apply H1; Apply H3. -Intros; Change (derivable_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c). -Apply derivable_pt_minus; Apply derivable_pt_mult. -Apply derivable_pt_const. -Apply (pr1 ? H3). -Apply derivable_pt_const. -Apply (pr2 ? H3). -Qed. - -(* Corollaries ... *) -Lemma MVT_cor1 : (f:(R->R); a,b:R; pr:(derivable f)) ``a < b``->(EXT c:R | ``(f b)-(f a) == (derive_pt f c (pr c))*(b-a)``/\``a < c < b``). -Intros f a b pr H; Cut (c:R)``a<c<b``->(derivable_pt f c); [Intro | Intros; Apply pr]. -Cut (c:R)``a<c<b``->(derivable_pt id c); [Intro | Intros; Apply derivable_pt_id]. -Cut ((c:R)``a<=c<=b``->(continuity_pt f c)); [Intro | Intros; Apply derivable_continuous_pt; Apply pr]. -Cut ((c:R)``a<=c<=b``->(continuity_pt id c)); [Intro | Intros; Apply derivable_continuous_pt; Apply derivable_id]. -Assert H2 := (MVT f id a b X X0 H H0 H1). -Elim H2; Intros c H3; Elim H3; Intros. -Exists c; Split. -Cut (derive_pt id c (X0 c x)) == (derive_pt id c (derivable_pt_id c)); [Intro | Apply pr_nu]. -Rewrite H5 in H4; Rewrite (derive_pt_id c) in H4; Rewrite Rmult_1r in H4; Rewrite <- H4; Replace (derive_pt f c (X c x)) with (derive_pt f c (pr c)); [Idtac | Apply pr_nu]; Apply Rmult_sym. -Apply x. -Qed. - -Theorem MVT_cor2 : (f,f':R->R;a,b:R) ``a<b`` -> ((c:R)``a<=c<=b``->(derivable_pt_lim f c (f' c))) -> (EXT c:R | ``(f b)-(f a)==(f' c)*(b-a)``/\``a<c<b``). -Intros f f' a b H H0; Cut ((c:R)``a<=c<=b``->(derivable_pt f c)). -Intro; Cut ((c:R)``a<c<b``->(derivable_pt f c)). -Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt f c)). -Intro; Cut ((c:R)``a<=c<=b``->(derivable_pt id c)). -Intro; Cut ((c:R)``a<c<b``->(derivable_pt id c)). -Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt id c)). -Intro; Elim (MVT f id a b X0 X2 H H1 H2); Intros; Elim H3; Clear H3; Intros; Exists x; Split. -Cut (derive_pt id x (X2 x x0))==R1. -Cut (derive_pt f x (X0 x x0))==(f' x). -Intros; Rewrite H4 in H3; Rewrite H5 in H3; Unfold id in H3; Rewrite Rmult_1r in H3; Rewrite Rmult_sym; Symmetry; Assumption. -Apply derive_pt_eq_0; Apply H0; Elim x0; Intros; Split; Left; Assumption. -Apply derive_pt_eq_0; Apply derivable_pt_lim_id. -Assumption. -Intros; Apply derivable_continuous_pt; Apply X1; Assumption. -Intros; Apply derivable_pt_id. -Intros; Apply derivable_pt_id. -Intros; Apply derivable_continuous_pt; Apply X; Assumption. -Intros; Elim H1; Intros; Apply X; Split; Left; Assumption. -Intros; Unfold derivable_pt; Apply Specif.existT with (f' c); Apply H0; Apply H1. -Qed. - -Lemma MVT_cor3 : (f,f':(R->R); a,b:R) ``a < b`` -> ((x:R)``a <= x`` -> ``x <= b``->(derivable_pt_lim f x (f' x))) -> (EXT c:R | ``a<=c``/\``c<=b``/\``(f b)==(f a) + (f' c)*(b-a)``). -Intros f f' a b H H0; Assert H1 : (EXT c:R | ``(f b) -(f a) == (f' c)*(b-a)``/\``a<c<b``); [Apply MVT_cor2; [Apply H | Intros; Elim H1; Intros; Apply (H0 ? H2 H3)] | Elim H1; Intros; Exists x; Elim H2; Intros; Elim H4; Intros; Split; [Left; Assumption | Split; [Left; Assumption | Rewrite <- H3; Ring]]]. -Qed. - -Lemma Rolle : (f:R->R;a,b:R;pr:(x:R)``a<x<b``->(derivable_pt f x)) ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ``a<b`` -> (f a)==(f b) -> (EXT c:R | (EXT P: ``a<c<b`` | ``(derive_pt f c (pr c P))==0``)). -Intros; Assert H2 : (x:R)``a<x<b``->(derivable_pt id x). -Intros; Apply derivable_pt_id. -Assert H3 := (MVT f id a b pr H2 H0 H); Assert H4 : (x:R)``a<=x<=b``->(continuity_pt id x). -Intros; Apply derivable_continuous; Apply derivable_id. -Elim (H3 H4); Intros; Elim H5; Intros; Exists x; Exists x0; Rewrite H1 in H6; Unfold id in H6; Unfold Rminus in H6; Rewrite Rplus_Ropp_r in H6; Rewrite Rmult_Ol in H6; Apply r_Rmult_mult with ``b-a``; [Rewrite Rmult_Or; Apply H6 | Apply Rminus_eq_contra; Red; Intro; Rewrite H7 in H0; Elim (Rlt_antirefl ? H0)]. -Qed. - -(**********) -Lemma nonneg_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``0<=(derive_pt f x (pr x))``) -> (increasing f). -Intros. -Unfold increasing. -Intros. -Case (total_order_T x y); Intro. -Elim s; Intro. -Apply Rle_anti_compatibility with ``-(f x)``. -Rewrite Rplus_Ropp_l; Rewrite Rplus_sym. -Assert H1 := (MVT_cor1 f ? ? pr a). -Elim H1; Intros. -Elim H2; Intros. -Unfold Rminus in H3. -Rewrite H3. -Apply Rmult_le_pos. -Apply H. -Apply Rle_anti_compatibility with x. -Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring]. -Rewrite b; Right; Reflexivity. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r)). -Qed. - -(**********) -Lemma nonpos_derivative_0 : (f:R->R;pr:(derivable f)) (decreasing f) -> ((x:R) ``(derive_pt f x (pr x))<=0``). -Intros f pr H x; Assert H0 :=H; Unfold decreasing in H0; Generalize (derivable_derive f x (pr x)); Intro; Elim H1; Intros l H2. -Rewrite H2; Case (total_order l R0); Intro. -Left; Assumption. -Elim H3; Intro. -Right; Assumption. -Generalize (derive_pt_eq_1 f x l (pr x) H2); Intros; Cut ``0< (l/2)``. -Intro; Elim (H5 ``(l/2)`` H6); Intros delta H7; Cut ``delta/2<>0``/\``0<delta/2``/\``(Rabsolu delta/2)<delta``. -Intro; Decompose [and] H8; Intros; Generalize (H7 ``delta/2`` H9 H12); Cut ``((f (x+delta/2))-(f x))/(delta/2)<=0``. -Intro; Cut ``0< -(((f (x+delta/2))-(f x))/(delta/2)-l)``. -Intro; Unfold Rabsolu; Case (case_Rabsolu ``((f (x+delta/2))-(f x))/(delta/2)-l``). -Intros; Generalize (Rlt_compatibility_r ``-l`` ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` ``(l/2)`` H14); Unfold Rminus. -Replace ``(l/2)+ -l`` with ``-(l/2)``. -Replace `` -(((f (x+delta/2))+ -(f x))/(delta/2)+ -l)+ -l`` with ``-(((f (x+delta/2))+ -(f x))/(delta/2))``. -Intro. -Generalize (Rlt_Ropp ``-(((f (x+delta/2))+ -(f x))/(delta/2))`` ``-(l/2)`` H15). -Repeat Rewrite Ropp_Ropp. -Intro. -Generalize (Rlt_trans ``0`` ``l/2`` ``((f (x+delta/2))-(f x))/(delta/2)`` H6 H16); Intro. -Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``((f (x+delta/2))-(f x))/(delta/2)`` ``0`` H17 H10)). -Ring. -Pattern 3 l; Rewrite double_var. -Ring. -Intros. -Generalize (Rge_Ropp ``((f (x+delta/2))-(f x))/(delta/2)-l`` ``0`` r). -Rewrite Ropp_O. -Intro. -Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` ``0`` H13 H15)). -Replace ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` with ``(((f (x))-(f (x+delta/2)))/(delta/2)) +l``. -Unfold Rminus. -Apply ge0_plus_gt0_is_gt0. -Unfold Rdiv; Apply Rmult_le_pos. -Cut ``x<=(x+(delta*/2))``. -Intro; Generalize (H0 x ``x+(delta*/2)`` H13); Intro; Generalize (Rle_compatibility ``-(f (x+delta/2))`` ``(f (x+delta/2))`` ``(f x)`` H14); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption. -Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption. -Left; Apply Rlt_Rinv; Assumption. -Assumption. -Rewrite Ropp_distr2. -Unfold Rminus. -Rewrite (Rplus_sym l). -Unfold Rdiv. -Rewrite <- Ropp_mul1. -Rewrite Ropp_distr1. -Rewrite Ropp_Ropp. -Rewrite (Rplus_sym (f x)). -Reflexivity. -Replace ``((f (x+delta/2))-(f x))/(delta/2)`` with ``-(((f x)-(f (x+delta/2)))/(delta/2))``. -Rewrite <- Ropp_O. -Apply Rge_Ropp. -Apply Rle_sym1. -Unfold Rdiv; Apply Rmult_le_pos. -Cut ``x<=(x+(delta*/2))``. -Intro; Generalize (H0 x ``x+(delta*/2)`` H10); Intro. -Generalize (Rle_compatibility ``-(f (x+delta/2))`` ``(f (x+delta/2))`` ``(f x)`` H13); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption. -Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption. -Left; Apply Rlt_Rinv; Assumption. -Unfold Rdiv; Rewrite <- Ropp_mul1. -Rewrite Ropp_distr2. -Reflexivity. -Split. -Unfold Rdiv; Apply prod_neq_R0. -Generalize (cond_pos delta); Intro; Red; Intro H9; Rewrite H9 in H8; Elim (Rlt_antirefl ``0`` H8). -Apply Rinv_neq_R0; DiscrR. -Split. -Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0]. -Rewrite Rabsolu_right. -Unfold Rdiv; Apply Rlt_monotony_contra with ``2``. -Sup0. -Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Rewrite double; Pattern 1 (pos delta); Rewrite <- Rplus_Or. -Apply Rlt_compatibility; Apply (cond_pos delta). -DiscrR. -Apply Rle_sym1; Unfold Rdiv; Left; Apply Rmult_lt_pos. -Apply (cond_pos delta). -Apply Rlt_Rinv; Sup0. -Unfold Rdiv; Apply Rmult_lt_pos; [Apply H4 | Apply Rlt_Rinv; Sup0]. -Qed. - -(**********) -Lemma increasing_decreasing_opp : (f:R->R) (increasing f) -> (decreasing (opp_fct f)). -Unfold increasing decreasing opp_fct; Intros; Generalize (H x y H0); Intro; Apply Rge_Ropp; Apply Rle_sym1; Assumption. -Qed. - -(**********) -Lemma nonpos_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))<=0``) -> (decreasing f). -Intros. -Cut (h:R)``-(-(f h))==(f h)``. -Intro. -Generalize (increasing_decreasing_opp (opp_fct f)). -Unfold decreasing. -Unfold opp_fct. -Intros. -Rewrite <- (H0 x); Rewrite <- (H0 y). -Apply H1. -Cut (x:R)``0<=(derive_pt (opp_fct f) x ((derivable_opp f pr) x))``. -Intros. -Replace [x:R]``-(f x)`` with (opp_fct f); [Idtac | Reflexivity]. -Apply (nonneg_derivative_1 (opp_fct f) (derivable_opp f pr) H3). -Intro. -Assert H3 := (derive_pt_opp f x0 (pr x0)). -Cut ``(derive_pt (opp_fct f) x0 (derivable_pt_opp f x0 (pr x0)))==(derive_pt (opp_fct f) x0 (derivable_opp f pr x0))``. -Intro. -Rewrite <- H4. -Rewrite H3. -Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Apply (H x0). -Apply pr_nu. -Assumption. -Intro; Ring. -Qed. - -(**********) -Lemma positive_derivative : (f:R->R;pr:(derivable f)) ((x:R) ``0<(derive_pt f x (pr x))``)->(strict_increasing f). -Intros. -Unfold strict_increasing. -Intros. -Apply Rlt_anti_compatibility with ``-(f x)``. -Rewrite Rplus_Ropp_l; Rewrite Rplus_sym. -Assert H1 := (MVT_cor1 f ? ? pr H0). -Elim H1; Intros. -Elim H2; Intros. -Unfold Rminus in H3. -Rewrite H3. -Apply Rmult_lt_pos. -Apply H. -Apply Rlt_anti_compatibility with x. -Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring]. -Qed. - -(**********) -Lemma strictincreasing_strictdecreasing_opp : (f:R->R) (strict_increasing f) -> -(strict_decreasing (opp_fct f)). -Unfold strict_increasing strict_decreasing opp_fct; Intros; Generalize (H x y H0); Intro; Apply Rlt_Ropp; Assumption. -Qed. - -(**********) -Lemma negative_derivative : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))<0``)->(strict_decreasing f). -Intros. -Cut (h:R)``- (-(f h))==(f h)``. -Intros. -Generalize (strictincreasing_strictdecreasing_opp (opp_fct f)). -Unfold strict_decreasing opp_fct. -Intros. -Rewrite <- (H0 x). -Rewrite <- (H0 y). -Apply H1; [Idtac | Assumption]. -Cut (x:R)``0<(derive_pt (opp_fct f) x (derivable_opp f pr x))``. -Intros; EApply positive_derivative; Apply H3. -Intro. -Assert H3 := (derive_pt_opp f x0 (pr x0)). -Cut ``(derive_pt (opp_fct f) x0 (derivable_pt_opp f x0 (pr x0)))==(derive_pt (opp_fct f) x0 (derivable_opp f pr x0))``. -Intro. -Rewrite <- H4; Rewrite H3. -Rewrite <- Ropp_O; Apply Rlt_Ropp; Apply (H x0). -Apply pr_nu. -Intro; Ring. -Qed. - -(**********) -Lemma null_derivative_0 : (f:R->R;pr:(derivable f)) (constant f)->((x:R) ``(derive_pt f x (pr x))==0``). -Intros. -Unfold constant in H. -Apply derive_pt_eq_0. -Intros; Exists (mkposreal ``1`` Rlt_R0_R1); Simpl; Intros. -Rewrite (H x ``x+h``); Unfold Rminus; Unfold Rdiv; Rewrite Rplus_Ropp_r; Rewrite Rmult_Ol; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Qed. - -(**********) -Lemma increasing_decreasing : (f:R->R) (increasing f) -> (decreasing f) -> (constant f). -Unfold increasing decreasing constant; Intros; Case (total_order x y); Intro. -Generalize (Rlt_le x y H1); Intro; Apply (Rle_antisym (f x) (f y) (H x y H2) (H0 x y H2)). -Elim H1; Intro. -Rewrite H2; Reflexivity. -Generalize (Rlt_le y x H2); Intro; Symmetry; Apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)). -Qed. - -(**********) -Lemma null_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))==0``)->(constant f). -Intros. -Cut (x:R)``(derive_pt f x (pr x)) <= 0``. -Cut (x:R)``0 <= (derive_pt f x (pr x))``. -Intros. -Assert H2 := (nonneg_derivative_1 f pr H0). -Assert H3 := (nonpos_derivative_1 f pr H1). -Apply increasing_decreasing; Assumption. -Intro; Right; Symmetry; Apply (H x). -Intro; Right; Apply (H x). -Qed. - -(**********) -Lemma derive_increasing_interv_ax : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> (((t:R) ``a<t<b`` -> ``0<(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<(f y)``)) /\ (((t:R) ``a<t<b`` -> ``0<=(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<=(f y)``)). -Intros. -Split; Intros. -Apply Rlt_anti_compatibility with ``-(f x)``. -Rewrite Rplus_Ropp_l; Rewrite Rplus_sym. -Assert H4 := (MVT_cor1 f ? ? pr H3). -Elim H4; Intros. -Elim H5; Intros. -Unfold Rminus in H6. -Rewrite H6. -Apply Rmult_lt_pos. -Apply H0. -Elim H7; Intros. -Split. -Elim H1; Intros. -Apply Rle_lt_trans with x; Assumption. -Elim H2; Intros. -Apply Rlt_le_trans with y; Assumption. -Apply Rlt_anti_compatibility with x. -Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring]. -Apply Rle_anti_compatibility with ``-(f x)``. -Rewrite Rplus_Ropp_l; Rewrite Rplus_sym. -Assert H4 := (MVT_cor1 f ? ? pr H3). -Elim H4; Intros. -Elim H5; Intros. -Unfold Rminus in H6. -Rewrite H6. -Apply Rmult_le_pos. -Apply H0. -Elim H7; Intros. -Split. -Elim H1; Intros. -Apply Rle_lt_trans with x; Assumption. -Elim H2; Intros. -Apply Rlt_le_trans with y; Assumption. -Apply Rle_anti_compatibility with x. -Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Left; Assumption | Ring]. -Qed. - -(**********) -Lemma derive_increasing_interv : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> ((t:R) ``a<t<b`` -> ``0<(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<(f y)``). -Intros. -Generalize (derive_increasing_interv_ax a b f pr H); Intro. -Elim H4; Intros H5 _; Apply (H5 H0 x y H1 H2 H3). -Qed. - -(**********) -Lemma derive_increasing_interv_var : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> ((t:R) ``a<t<b`` -> ``0<=(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<=(f y)``). -Intros a b f pr H H0 x y H1 H2 H3; Generalize (derive_increasing_interv_ax a b f pr H); Intro; Elim H4; Intros _ H5; Apply (H5 H0 x y H1 H2 H3). -Qed. - -(**********) -(**********) -Theorem IAF : (f:R->R;a,b,k:R;pr:(derivable f)) ``a<=b`` -> ((c:R) ``a<=c<=b`` -> ``(derive_pt f c (pr c))<=k``) -> ``(f b)-(f a)<=k*(b-a)``. -Intros. -Case (total_order_T a b); Intro. -Elim s; Intro. -Assert H1 := (MVT_cor1 f ? ? pr a0). -Elim H1; Intros. -Elim H2; Intros. -Rewrite H3. -Do 2 Rewrite <- (Rmult_sym ``(b-a)``). -Apply Rle_monotony. -Apply Rle_anti_compatibility with ``a``; Rewrite Rplus_Or. -Replace ``a+(b-a)`` with b; [Assumption | Ring]. -Apply H0. -Elim H4; Intros. -Split; Left; Assumption. -Rewrite b0. -Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r. -Rewrite Rmult_Or; Right; Reflexivity. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). -Qed. - -Lemma IAF_var : (f,g:R->R;a,b:R;pr1:(derivable f);pr2:(derivable g)) ``a<=b`` -> ((c:R) ``a<=c<=b`` -> ``(derive_pt g c (pr2 c))<=(derive_pt f c (pr1 c))``) -> ``(g b)-(g a)<=(f b)-(f a)``. -Intros. -Cut (derivable (minus_fct g f)). -Intro. -Cut (c:R)``a<=c<=b``->``(derive_pt (minus_fct g f) c (X c))<=0``. -Intro. -Assert H2 := (IAF (minus_fct g f) a b R0 X H H1). -Rewrite Rmult_Ol in H2; Unfold minus_fct in H2. -Apply Rle_anti_compatibility with ``-(f b)+(f a)``. -Replace ``-(f b)+(f a)+((f b)-(f a))`` with R0; [Idtac | Ring]. -Replace ``-(f b)+(f a)+((g b)-(g a))`` with ``(g b)-(f b)-((g a)-(f a))``; [Apply H2 | Ring]. -Intros. -Cut (derive_pt (minus_fct g f) c (X c))==(derive_pt (minus_fct g f) c (derivable_pt_minus ? ? ? (pr2 c) (pr1 c))). -Intro. -Rewrite H2. -Rewrite derive_pt_minus. -Apply Rle_anti_compatibility with (derive_pt f c (pr1 c)). -Rewrite Rplus_Or. -Replace ``(derive_pt f c (pr1 c))+((derive_pt g c (pr2 c))-(derive_pt f c (pr1 c)))`` with ``(derive_pt g c (pr2 c))``; [Idtac | Ring]. -Apply H0; Assumption. -Apply pr_nu. -Apply derivable_minus; Assumption. -Qed. - -(* If f has a null derivative in ]a,b[ and is continue in [a,b], *) -(* then f is constant on [a,b] *) -Lemma null_derivative_loc : (f:R->R;a,b:R;pr:(x:R)``a<x<b``->(derivable_pt f x)) ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ((x:R;P:``a<x<b``)(derive_pt f x (pr x P))==R0) -> (constant_D_eq f [x:R]``a<=x<=b`` (f a)). -Intros; Unfold constant_D_eq; Intros; Case (total_order_T a b); Intro. -Elim s; Intro. -Assert H2 : (y:R)``a<y<x``->(derivable_pt id y). -Intros; Apply derivable_pt_id. -Assert H3 : (y:R)``a<=y<=x``->(continuity_pt id y). -Intros; Apply derivable_continuous; Apply derivable_id. -Assert H4 : (y:R)``a<y<x``->(derivable_pt f y). -Intros; Apply pr; Elim H4; Intros; Split. -Assumption. -Elim H1; Intros; Apply Rlt_le_trans with x; Assumption. -Assert H5 : (y:R)``a<=y<=x``->(continuity_pt f y). -Intros; Apply H; Elim H5; Intros; Split. -Assumption. -Elim H1; Intros; Apply Rle_trans with x; Assumption. -Elim H1; Clear H1; Intros; Elim H1; Clear H1; Intro. -Assert H7 := (MVT f id a x H4 H2 H1 H5 H3). -Elim H7; Intros; Elim H8; Intros; Assert H10 : ``a<x0<b``. -Elim x1; Intros; Split. -Assumption. -Apply Rlt_le_trans with x; Assumption. -Assert H11 : ``(derive_pt f x0 (H4 x0 x1))==0``. -Replace (derive_pt f x0 (H4 x0 x1)) with (derive_pt f x0 (pr x0 H10)); [Apply H0 | Apply pr_nu]. -Assert H12 : ``(derive_pt id x0 (H2 x0 x1))==1``. -Apply derive_pt_eq_0; Apply derivable_pt_lim_id. -Rewrite H11 in H9; Rewrite H12 in H9; Rewrite Rmult_Or in H9; Rewrite Rmult_1r in H9; Apply Rminus_eq; Symmetry; Assumption. -Rewrite H1; Reflexivity. -Assert H2 : x==a. -Rewrite <- b0 in H1; Elim H1; Intros; Apply Rle_antisym; Assumption. -Rewrite H2; Reflexivity. -Elim H1; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? (Rle_trans ? ? ? H2 H3) r)). -Qed. - -(* Unicity of the antiderivative *) -Lemma antiderivative_Ucte : (f,g1,g2:R->R;a,b:R) (antiderivative f g1 a b) -> (antiderivative f g2 a b) -> (EXT c:R | (x:R)``a<=x<=b``->``(g1 x)==(g2 x)+c``). -Unfold antiderivative; Intros; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros H0 _; Exists ``(g1 a)-(g2 a)``; Intros; Assert H3 : (x:R)``a<=x<=b``->(derivable_pt g1 x). -Intros; Unfold derivable_pt; Apply Specif.existT with (f x0); Elim (H x0 H3); Intros; EApply derive_pt_eq_1; Symmetry; Apply H4. -Assert H4 : (x:R)``a<=x<=b``->(derivable_pt g2 x). -Intros; Unfold derivable_pt; Apply Specif.existT with (f x0); Elim (H0 x0 H4); Intros; EApply derive_pt_eq_1; Symmetry; Apply H5. -Assert H5 : (x:R)``a<x<b``->(derivable_pt (minus_fct g1 g2) x). -Intros; Elim H5; Intros; Apply derivable_pt_minus; [Apply H3; Split; Left; Assumption | Apply H4; Split; Left; Assumption]. -Assert H6 : (x:R)``a<=x<=b``->(continuity_pt (minus_fct g1 g2) x). -Intros; Apply derivable_continuous_pt; Apply derivable_pt_minus; [Apply H3 | Apply H4]; Assumption. -Assert H7 : (x:R;P:``a<x<b``)(derive_pt (minus_fct g1 g2) x (H5 x P))==``0``. -Intros; Elim P; Intros; Apply derive_pt_eq_0; Replace R0 with ``(f x0)-(f x0)``; [Idtac | Ring]. -Assert H9 : ``a<=x0<=b``. -Split; Left; Assumption. -Apply derivable_pt_lim_minus; [Elim (H ? H9) | Elim (H0 ? H9)]; Intros; EApply derive_pt_eq_1; Symmetry; Apply H10. -Assert H8 := (null_derivative_loc (minus_fct g1 g2) a b H5 H6 H7); Unfold constant_D_eq in H8; Assert H9 := (H8 ? H2); Unfold minus_fct in H9; Rewrite <- H9; Ring. -Qed. |