summaryrefslogtreecommitdiff
path: root/theories7/Reals/Cos_rel.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Cos_rel.v')
-rw-r--r--theories7/Reals/Cos_rel.v360
1 files changed, 0 insertions, 360 deletions
diff --git a/theories7/Reals/Cos_rel.v b/theories7/Reals/Cos_rel.v
deleted file mode 100644
index e29825ab..00000000
--- a/theories7/Reals/Cos_rel.v
+++ /dev/null
@@ -1,360 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Cos_rel.v,v 1.1.2.1 2004/07/16 19:31:32 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require SeqSeries.
-Require Rtrigo_def.
-V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
-Open Local Scope R_scope.
-
-Definition A1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))`` N).
-
-Definition B1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow x (plus (mult (S (S O)) k) (S O)))`` N).
-
-Definition C1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))`` N).
-
-Definition Reste1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (mult (S (S O)) (S (plus l k)))))*(pow x (mult (S (S O)) (S (plus l k))))*(pow (-1) (minus N l))/(INR (fact (mult (S (S O)) (minus N l))))*(pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))) (pred N)).
-
-Definition Reste2 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*(pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*(pow (-1) (minus N l))/(INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*(pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))) (pred N)).
-
-Definition Reste [x,y:R] : nat -> R := [N:nat]``(Reste2 x y N)-(Reste1 x y (S N))``.
-
-(* Here is the main result that will be used to prove that (cos (x+y))=(cos x)(cos y)-(sin x)(sin y) *)
-Theorem cos_plus_form : (x,y:R;n:nat) (lt O n) -> ``(A1 x (S n))*(A1 y (S n))-(B1 x n)*(B1 y n)+(Reste x y n)``==(C1 x y (S n)).
-Intros.
-Unfold A1 B1.
-Rewrite (cauchy_finite [k:nat]
- ``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*
- (pow x (mult (S (S O)) k))`` [k:nat]
- ``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*
- (pow y (mult (S (S O)) k))`` (S n)).
-Rewrite (cauchy_finite [k:nat]
- ``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*
- (pow x (plus (mult (S (S O)) k) (S O)))`` [k:nat]
- ``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*
- (pow y (plus (mult (S (S O)) k) (S O)))`` n H).
-Unfold Reste.
-Replace (sum_f_R0
- [k:nat]
- (sum_f_R0
- [l:nat]
- ``(pow ( -1) (S (plus l k)))/
- (INR (fact (mult (S (S O)) (S (plus l k)))))*
- (pow x (mult (S (S O)) (S (plus l k))))*
- ((pow ( -1) (minus (S n) l))/
- (INR (fact (mult (S (S O)) (minus (S n) l))))*
- (pow y (mult (S (S O)) (minus (S n) l))))``
- (pred (minus (S n) k))) (pred (S n))) with (Reste1 x y (S n)).
-Replace (sum_f_R0
- [k:nat]
- (sum_f_R0
- [l:nat]
- ``(pow ( -1) (S (plus l k)))/
- (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
- (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
- ((pow ( -1) (minus n l))/
- (INR (fact (plus (mult (S (S O)) (minus n l)) (S O))))*
- (pow y (plus (mult (S (S O)) (minus n l)) (S O))))``
- (pred (minus n k))) (pred n)) with (Reste2 x y n).
-Ring.
-Replace (sum_f_R0
- [k:nat]
- (sum_f_R0
- [p:nat]
- ``(pow ( -1) p)/(INR (fact (mult (S (S O)) p)))*
- (pow x (mult (S (S O)) p))*((pow ( -1) (minus k p))/
- (INR (fact (mult (S (S O)) (minus k p))))*
- (pow y (mult (S (S O)) (minus k p))))`` k) (S n)) with (sum_f_R0 [k:nat](Rmult ``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) k) (mult (S (S O)) l))*(pow x (mult (S (S O)) l))*(pow y (mult (S (S O)) (minus k l)))`` k)) (S n)).
-Pose sin_nnn := [n:nat]Cases n of O => R0 | (S p) => (Rmult ``(pow (-1) (S p))/(INR (fact (mult (S (S O)) (S p))))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) (S p)) (S (mult (S (S O)) l)))*(pow x (S (mult (S (S O)) l)))*(pow y (S (mult (S (S O)) (minus p l))))`` p)) end.
-Replace (Ropp (sum_f_R0
- [k:nat]
- (sum_f_R0
- [p:nat]
- ``(pow ( -1) p)/
- (INR (fact (plus (mult (S (S O)) p) (S O))))*
- (pow x (plus (mult (S (S O)) p) (S O)))*
- ((pow ( -1) (minus k p))/
- (INR (fact (plus (mult (S (S O)) (minus k p)) (S O))))*
- (pow y (plus (mult (S (S O)) (minus k p)) (S O))))`` k)
- n)) with (sum_f_R0 sin_nnn (S n)).
-Rewrite <- sum_plus.
-Unfold C1.
-Apply sum_eq; Intros.
-Induction i.
-Simpl.
-Rewrite Rplus_Ol.
-Replace (C O O) with R1.
-Unfold Rdiv; Rewrite Rinv_R1.
-Ring.
-Unfold C.
-Rewrite <- minus_n_n.
-Simpl.
-Unfold Rdiv; Rewrite Rmult_1r; Rewrite Rinv_R1; Ring.
-Unfold sin_nnn.
-Rewrite <- Rmult_Rplus_distr.
-Apply Rmult_mult_r.
-Rewrite binomial.
-Pose Wn := [i0:nat]``(C (mult (S (S O)) (S i)) i0)*(pow x i0)*
- (pow y (minus (mult (S (S O)) (S i)) i0))``.
-Replace (sum_f_R0
- [l:nat]
- ``(C (mult (S (S O)) (S i)) (mult (S (S O)) l))*
- (pow x (mult (S (S O)) l))*
- (pow y (mult (S (S O)) (minus (S i) l)))`` (S i)) with (sum_f_R0 [l:nat](Wn (mult (2) l)) (S i)).
-Replace (sum_f_R0
- [l:nat]
- ``(C (mult (S (S O)) (S i)) (S (mult (S (S O)) l)))*
- (pow x (S (mult (S (S O)) l)))*
- (pow y (S (mult (S (S O)) (minus i l))))`` i) with (sum_f_R0 [l:nat](Wn (S (mult (2) l))) i).
-Rewrite Rplus_sym.
-Apply sum_decomposition.
-Apply sum_eq; Intros.
-Unfold Wn.
-Apply Rmult_mult_r.
-Replace (minus (mult (2) (S i)) (S (mult (2) i0))) with (S (mult (2) (minus i i0))).
-Reflexivity.
-Apply INR_eq.
-Rewrite S_INR; Rewrite mult_INR.
-Repeat Rewrite minus_INR.
-Rewrite mult_INR; Repeat Rewrite S_INR.
-Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Replace (mult (2) (S i)) with (S (S (mult (2) i))).
-Apply le_n_S.
-Apply le_trans with (mult (2) i).
-Apply mult_le; Assumption.
-Apply le_n_Sn.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Assumption.
-Apply sum_eq; Intros.
-Unfold Wn.
-Apply Rmult_mult_r.
-Replace (minus (mult (2) (S i)) (mult (2) i0)) with (mult (2) (minus (S i) i0)).
-Reflexivity.
-Apply INR_eq.
-Rewrite mult_INR.
-Repeat Rewrite minus_INR.
-Rewrite mult_INR; Repeat Rewrite S_INR.
-Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Apply mult_le; Assumption.
-Assumption.
-Rewrite <- (Ropp_Ropp (sum_f_R0 sin_nnn (S n))).
-Apply eq_Ropp.
-Replace ``-(sum_f_R0 sin_nnn (S n))`` with ``-1*(sum_f_R0 sin_nnn (S n))``; [Idtac | Ring].
-Rewrite scal_sum.
-Rewrite decomp_sum.
-Replace (sin_nnn O) with R0.
-Rewrite Rmult_Ol; Rewrite Rplus_Ol.
-Replace (pred (S n)) with n; [Idtac | Reflexivity].
-Apply sum_eq; Intros.
-Rewrite Rmult_sym.
-Unfold sin_nnn.
-Rewrite scal_sum.
-Rewrite scal_sum.
-Apply sum_eq; Intros.
-Unfold Rdiv.
-Repeat Rewrite Rmult_assoc.
-Rewrite (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``).
-Repeat Rewrite <- Rmult_assoc.
-Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``).
-Repeat Rewrite <- Rmult_assoc.
-Replace ``/(INR (fact (mult (S (S O)) (S i))))*
- (C (mult (S (S O)) (S i)) (S (mult (S (S O)) i0)))`` with ``/(INR (fact (plus (mult (S (S O)) i0) (S O))))*/(INR (fact (plus (mult (S (S O)) (minus i i0)) (S O))))``.
-Replace (S (mult (2) i0)) with (plus (mult (2) i0) (1)); [Idtac | Ring].
-Replace (S (mult (2) (minus i i0))) with (plus (mult (2) (minus i i0)) (1)); [Idtac | Ring].
-Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i0)*(pow (-1) (minus i i0))``.
-Ring.
-Simpl.
-Pattern 2 i; Replace i with (plus i0 (minus i i0)).
-Rewrite pow_add.
-Ring.
-Symmetry; Apply le_plus_minus; Assumption.
-Unfold C.
-Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l.
-Rewrite Rinv_Rmult.
-Replace (S (mult (S (S O)) i0)) with (plus (mult (2) i0) (1)); [Apply Rmult_mult_r | Ring].
-Replace (minus (mult (2) (S i)) (plus (mult (2) i0) (1))) with (plus (mult (2) (minus i i0)) (1)).
-Reflexivity.
-Apply INR_eq.
-Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite minus_INR.
-Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Replace (plus (mult (2) i0) (1)) with (S (mult (2) i0)).
-Replace (mult (2) (S i)) with (S (S (mult (2) i))).
-Apply le_n_S.
-Apply le_trans with (mult (2) i).
-Apply mult_le; Assumption.
-Apply le_n_Sn.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Assumption.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Reflexivity.
-Apply lt_O_Sn.
-Apply sum_eq; Intros.
-Rewrite scal_sum.
-Apply sum_eq; Intros.
-Unfold Rdiv.
-Repeat Rewrite <- Rmult_assoc.
-Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) i)))``).
-Repeat Rewrite <- Rmult_assoc.
-Replace ``/(INR (fact (mult (S (S O)) i)))*
- (C (mult (S (S O)) i) (mult (S (S O)) i0))`` with ``/(INR (fact (mult (S (S O)) i0)))*/(INR (fact (mult (S (S O)) (minus i i0))))``.
-Replace ``(pow (-1) i)`` with ``(pow (-1) i0)*(pow (-1) (minus i i0))``.
-Ring.
-Pattern 2 i; Replace i with (plus i0 (minus i i0)).
-Rewrite pow_add.
-Ring.
-Symmetry; Apply le_plus_minus; Assumption.
-Unfold C.
-Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l.
-Rewrite Rinv_Rmult.
-Replace (minus (mult (2) i) (mult (2) i0)) with (mult (2) (minus i i0)).
-Reflexivity.
-Apply INR_eq.
-Rewrite mult_INR; Repeat Rewrite minus_INR.
-Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Apply mult_le; Assumption.
-Assumption.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Unfold Reste2; Apply sum_eq; Intros.
-Apply sum_eq; Intros.
-Unfold Rdiv; Ring.
-Unfold Reste1; Apply sum_eq; Intros.
-Apply sum_eq; Intros.
-Unfold Rdiv; Ring.
-Apply lt_O_Sn.
-Qed.
-
-Lemma pow_sqr : (x:R;i:nat) (pow x (mult (2) i))==(pow ``x*x`` i).
-Intros.
-Assert H := (pow_Rsqr x i).
-Unfold Rsqr in H; Exact H.
-Qed.
-
-Lemma A1_cvg : (x:R) (Un_cv (A1 x) (cos x)).
-Intro.
-Assert H := (exist_cos ``x*x``).
-Elim H; Intros.
-Assert p_i := p.
-Unfold cos_in in p.
-Unfold cos_n infinit_sum in p.
-Unfold R_dist in p.
-Cut ``(cos x)==x0``.
-Intro.
-Rewrite H0.
-Unfold Un_cv; Unfold R_dist; Intros.
-Elim (p eps H1); Intros.
-Exists x1; Intros.
-Unfold A1.
-Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow (x*x) i)``) n).
-Apply H2; Assumption.
-Apply sum_eq.
-Intros.
-Replace ``(pow (x*x) i)`` with ``(pow x (mult (S (S O)) i))``.
-Reflexivity.
-Apply pow_sqr.
-Unfold cos.
-Case (exist_cos (Rsqr x)).
-Unfold Rsqr; Intros.
-Unfold cos_in in p_i.
-Unfold cos_in in c.
-Apply unicity_sum with [i:nat]``(cos_n i)*(pow (x*x) i)``; Assumption.
-Qed.
-
-Lemma C1_cvg : (x,y:R) (Un_cv (C1 x y) (cos (Rplus x y))).
-Intros.
-Assert H := (exist_cos ``(x+y)*(x+y)``).
-Elim H; Intros.
-Assert p_i := p.
-Unfold cos_in in p.
-Unfold cos_n infinit_sum in p.
-Unfold R_dist in p.
-Cut ``(cos (x+y))==x0``.
-Intro.
-Rewrite H0.
-Unfold Un_cv; Unfold R_dist; Intros.
-Elim (p eps H1); Intros.
-Exists x1; Intros.
-Unfold C1.
-Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow ((x+y)*(x+y)) i)``) n).
-Apply H2; Assumption.
-Apply sum_eq.
-Intros.
-Replace ``(pow ((x+y)*(x+y)) i)`` with ``(pow (x+y) (mult (S (S O)) i))``.
-Reflexivity.
-Apply pow_sqr.
-Unfold cos.
-Case (exist_cos (Rsqr ``x+y``)).
-Unfold Rsqr; Intros.
-Unfold cos_in in p_i.
-Unfold cos_in in c.
-Apply unicity_sum with [i:nat]``(cos_n i)*(pow ((x+y)*(x+y)) i)``; Assumption.
-Qed.
-
-Lemma B1_cvg : (x:R) (Un_cv (B1 x) (sin x)).
-Intro.
-Case (Req_EM x R0); Intro.
-Rewrite H.
-Rewrite sin_0.
-Unfold B1.
-Unfold Un_cv; Unfold R_dist; Intros; Exists O; Intros.
-Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow 0 (plus (mult (S (S O)) k) (S O)))``) n) with R0.
-Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
-Induction n.
-Simpl; Ring.
-Rewrite tech5; Rewrite <- Hrecn.
-Simpl; Ring.
-Unfold ge; Apply le_O_n.
-Assert H0 := (exist_sin ``x*x``).
-Elim H0; Intros.
-Assert p_i := p.
-Unfold sin_in in p.
-Unfold sin_n infinit_sum in p.
-Unfold R_dist in p.
-Cut ``(sin x)==x*x0``.
-Intro.
-Rewrite H1.
-Unfold Un_cv; Unfold R_dist; Intros.
-Cut ``0<eps/(Rabsolu x)``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption]].
-Elim (p ``eps/(Rabsolu x)`` H3); Intros.
-Exists x1; Intros.
-Unfold B1.
-Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow x (plus (mult (S (S O)) k) (S O)))``) n) with (Rmult x (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n)).
-Replace (Rminus (Rmult x (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n)) (Rmult x x0)) with (Rmult x (Rminus (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n) x0)); [Idtac | Ring].
-Rewrite Rabsolu_mult.
-Apply Rlt_monotony_contra with ``/(Rabsolu x)``.
-Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption.
-Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps); Unfold Rdiv in H4; Apply H4; Assumption.
-Apply Rabsolu_no_R0; Assumption.
-Rewrite scal_sum.
-Apply sum_eq.
-Intros.
-Rewrite pow_add.
-Rewrite pow_sqr.
-Simpl.
-Ring.
-Unfold sin.
-Case (exist_sin (Rsqr x)).
-Unfold Rsqr; Intros.
-Unfold sin_in in p_i.
-Unfold sin_in in s.
-Assert H1 := (unicity_sum [i:nat]``(sin_n i)*(pow (x*x) i)`` x0 x1 p_i s).
-Rewrite H1; Reflexivity.
-Qed.