summaryrefslogtreecommitdiff
path: root/theories7/NArith
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/NArith')
-rw-r--r--theories7/NArith/BinNat.v205
-rw-r--r--theories7/NArith/BinPos.v894
-rw-r--r--theories7/NArith/NArith.v14
-rw-r--r--theories7/NArith/Pnat.v472
4 files changed, 0 insertions, 1585 deletions
diff --git a/theories7/NArith/BinNat.v b/theories7/NArith/BinNat.v
deleted file mode 100644
index 5e04e22e..00000000
--- a/theories7/NArith/BinNat.v
+++ /dev/null
@@ -1,205 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: BinNat.v,v 1.1.2.1 2004/07/16 19:31:30 herbelin Exp $ i*)
-
-Require BinPos.
-
-(**********************************************************************)
-(** Binary natural numbers *)
-
-Inductive entier: Set := Nul : entier | Pos : positive -> entier.
-
-(** Declare binding key for scope positive_scope *)
-
-Delimits Scope N_scope with N.
-
-(** Automatically open scope N_scope for the constructors of N *)
-
-Bind Scope N_scope with entier.
-Arguments Scope Pos [ N_scope ].
-
-Open Local Scope N_scope.
-
-(** Operation x -> 2*x+1 *)
-
-Definition Un_suivi_de := [x]
- Cases x of Nul => (Pos xH) | (Pos p) => (Pos (xI p)) end.
-
-(** Operation x -> 2*x *)
-
-Definition Zero_suivi_de :=
- [n] Cases n of Nul => Nul | (Pos p) => (Pos (xO p)) end.
-
-(** Successor *)
-
-Definition Nsucc :=
- [n] Cases n of Nul => (Pos xH) | (Pos p) => (Pos (add_un p)) end.
-
-(** Addition *)
-
-Definition Nplus := [n,m]
- Cases n m of
- | Nul _ => m
- | _ Nul => n
- | (Pos p) (Pos q) => (Pos (add p q))
- end.
-
-V8Infix "+" Nplus : N_scope.
-
-(** Multiplication *)
-
-Definition Nmult := [n,m]
- Cases n m of
- | Nul _ => Nul
- | _ Nul => Nul
- | (Pos p) (Pos q) => (Pos (times p q))
- end.
-
-V8Infix "*" Nmult : N_scope.
-
-(** Order *)
-
-Definition Ncompare := [n,m]
- Cases n m of
- | Nul Nul => EGAL
- | Nul (Pos m') => INFERIEUR
- | (Pos n') Nul => SUPERIEUR
- | (Pos n') (Pos m') => (compare n' m' EGAL)
- end.
-
-V8Infix "?=" Ncompare (at level 70, no associativity) : N_scope.
-
-(** Peano induction on binary natural numbers *)
-
-Theorem Nind : (P:(entier ->Prop))
- (P Nul) ->((n:entier)(P n) ->(P (Nsucc n))) ->(n:entier)(P n).
-Proof.
-NewDestruct n.
- Assumption.
- Apply Pind with P := [p](P (Pos p)).
-Exact (H0 Nul H).
-Intro p'; Exact (H0 (Pos p')).
-Qed.
-
-(** Properties of addition *)
-
-Theorem Nplus_0_l : (n:entier)(Nplus Nul n)=n.
-Proof.
-Reflexivity.
-Qed.
-
-Theorem Nplus_0_r : (n:entier)(Nplus n Nul)=n.
-Proof.
-NewDestruct n; Reflexivity.
-Qed.
-
-Theorem Nplus_comm : (n,m:entier)(Nplus n m)=(Nplus m n).
-Proof.
-Intros.
-NewDestruct n; NewDestruct m; Simpl; Try Reflexivity.
-Rewrite add_sym; Reflexivity.
-Qed.
-
-Theorem Nplus_assoc :
- (n,m,p:entier)(Nplus n (Nplus m p))=(Nplus (Nplus n m) p).
-Proof.
-Intros.
-NewDestruct n; Try Reflexivity.
-NewDestruct m; Try Reflexivity.
-NewDestruct p; Try Reflexivity.
-Simpl; Rewrite add_assoc; Reflexivity.
-Qed.
-
-Theorem Nplus_succ : (n,m:entier)(Nplus (Nsucc n) m)=(Nsucc (Nplus n m)).
-Proof.
-NewDestruct n; NewDestruct m.
- Simpl; Reflexivity.
- Unfold Nsucc Nplus; Rewrite <- ZL12bis; Reflexivity.
- Simpl; Reflexivity.
- Simpl; Rewrite ZL14bis; Reflexivity.
-Qed.
-
-Theorem Nsucc_inj : (n,m:entier)(Nsucc n)=(Nsucc m)->n=m.
-Proof.
-NewDestruct n; NewDestruct m; Simpl; Intro H;
- Reflexivity Orelse Injection H; Clear H; Intro H.
- Symmetry in H; Contradiction add_un_not_un with p.
- Contradiction add_un_not_un with p.
- Rewrite add_un_inj with 1:=H; Reflexivity.
-Qed.
-
-Theorem Nplus_reg_l : (n,m,p:entier)(Nplus n m)=(Nplus n p)->m=p.
-Proof.
-Intro n; Pattern n; Apply Nind; Clear n; Simpl.
- Trivial.
- Intros n IHn m p H0; Do 2 Rewrite Nplus_succ in H0.
- Apply IHn; Apply Nsucc_inj; Assumption.
-Qed.
-
-(** Properties of multiplication *)
-
-Theorem Nmult_1_l : (n:entier)(Nmult (Pos xH) n)=n.
-Proof.
-NewDestruct n; Reflexivity.
-Qed.
-
-Theorem Nmult_1_r : (n:entier)(Nmult n (Pos xH))=n.
-Proof.
-NewDestruct n; Simpl; Try Reflexivity.
-Rewrite times_x_1; Reflexivity.
-Qed.
-
-Theorem Nmult_comm : (n,m:entier)(Nmult n m)=(Nmult m n).
-Proof.
-Intros.
-NewDestruct n; NewDestruct m; Simpl; Try Reflexivity.
-Rewrite times_sym; Reflexivity.
-Qed.
-
-Theorem Nmult_assoc :
- (n,m,p:entier)(Nmult n (Nmult m p))=(Nmult (Nmult n m) p).
-Proof.
-Intros.
-NewDestruct n; Try Reflexivity.
-NewDestruct m; Try Reflexivity.
-NewDestruct p; Try Reflexivity.
-Simpl; Rewrite times_assoc; Reflexivity.
-Qed.
-
-Theorem Nmult_plus_distr_r :
- (n,m,p:entier)(Nmult (Nplus n m) p)=(Nplus (Nmult n p) (Nmult m p)).
-Proof.
-Intros.
-NewDestruct n; Try Reflexivity.
-NewDestruct m; NewDestruct p; Try Reflexivity.
-Simpl; Rewrite times_add_distr_l; Reflexivity.
-Qed.
-
-Theorem Nmult_reg_r : (n,m,p:entier) ~p=Nul->(Nmult n p)=(Nmult m p) -> n=m.
-Proof.
-NewDestruct p; Intros Hp H.
-Contradiction Hp; Reflexivity.
-NewDestruct n; NewDestruct m; Reflexivity Orelse Try Discriminate H.
-Injection H; Clear H; Intro H; Rewrite simpl_times_r with 1:=H; Reflexivity.
-Qed.
-
-Theorem Nmult_0_l : (n:entier) (Nmult Nul n) = Nul.
-Proof.
-Reflexivity.
-Qed.
-
-(** Properties of comparison *)
-
-Theorem Ncompare_Eq_eq : (n,m:entier) (Ncompare n m) = EGAL -> n = m.
-Proof.
-NewDestruct n as [|n]; NewDestruct m as [|m]; Simpl; Intro H;
- Reflexivity Orelse Try Discriminate H.
- Rewrite (compare_convert_EGAL n m H); Reflexivity.
-Qed.
-
diff --git a/theories7/NArith/BinPos.v b/theories7/NArith/BinPos.v
deleted file mode 100644
index ae61587d..00000000
--- a/theories7/NArith/BinPos.v
+++ /dev/null
@@ -1,894 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: BinPos.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ i*)
-
-(**********************************************************************)
-(** Binary positive numbers *)
-
-(** Original development by Pierre Crégut, CNET, Lannion, France *)
-
-Inductive positive : Set :=
- xI : positive -> positive
-| xO : positive -> positive
-| xH : positive.
-
-(** Declare binding key for scope positive_scope *)
-
-Delimits Scope positive_scope with positive.
-
-(** Automatically open scope positive_scope for type positive, xO and xI *)
-
-Bind Scope positive_scope with positive.
-Arguments Scope xO [ positive_scope ].
-Arguments Scope xI [ positive_scope ].
-
-(** Successor *)
-
-Fixpoint add_un [x:positive]:positive :=
- Cases x of
- (xI x') => (xO (add_un x'))
- | (xO x') => (xI x')
- | xH => (xO xH)
- end.
-
-(** Addition *)
-
-Fixpoint add [x:positive]:positive -> positive := [y:positive]
- Cases x y of
- | (xI x') (xI y') => (xO (add_carry x' y'))
- | (xI x') (xO y') => (xI (add x' y'))
- | (xI x') xH => (xO (add_un x'))
- | (xO x') (xI y') => (xI (add x' y'))
- | (xO x') (xO y') => (xO (add x' y'))
- | (xO x') xH => (xI x')
- | xH (xI y') => (xO (add_un y'))
- | xH (xO y') => (xI y')
- | xH xH => (xO xH)
- end
-with add_carry [x:positive]:positive -> positive := [y:positive]
- Cases x y of
- | (xI x') (xI y') => (xI (add_carry x' y'))
- | (xI x') (xO y') => (xO (add_carry x' y'))
- | (xI x') xH => (xI (add_un x'))
- | (xO x') (xI y') => (xO (add_carry x' y'))
- | (xO x') (xO y') => (xI (add x' y'))
- | (xO x') xH => (xO (add_un x'))
- | xH (xI y') => (xI (add_un y'))
- | xH (xO y') => (xO (add_un y'))
- | xH xH => (xI xH)
- end.
-
-V7only [Notation "x + y" := (add x y) : positive_scope.].
-V8Infix "+" add : positive_scope.
-
-Open Local Scope positive_scope.
-
-(** From binary positive numbers to Peano natural numbers *)
-
-Fixpoint positive_to_nat [x:positive]:nat -> nat :=
- [pow2:nat]
- Cases x of
- (xI x') => (plus pow2 (positive_to_nat x' (plus pow2 pow2)))
- | (xO x') => (positive_to_nat x' (plus pow2 pow2))
- | xH => pow2
- end.
-
-Definition convert := [x:positive] (positive_to_nat x (S O)).
-
-(** From Peano natural numbers to binary positive numbers *)
-
-Fixpoint anti_convert [n:nat]: positive :=
- Cases n of
- O => xH
- | (S x') => (add_un (anti_convert x'))
- end.
-
-(** Operation x -> 2*x-1 *)
-
-Fixpoint double_moins_un [x:positive]:positive :=
- Cases x of
- (xI x') => (xI (xO x'))
- | (xO x') => (xI (double_moins_un x'))
- | xH => xH
- end.
-
-(** Predecessor *)
-
-Definition sub_un := [x:positive]
- Cases x of
- (xI x') => (xO x')
- | (xO x') => (double_moins_un x')
- | xH => xH
- end.
-
-(** An auxiliary type for subtraction *)
-
-Inductive positive_mask: Set :=
- IsNul : positive_mask
- | IsPos : positive -> positive_mask
- | IsNeg : positive_mask.
-
-(** Operation x -> 2*x+1 *)
-
-Definition Un_suivi_de_mask := [x:positive_mask]
- Cases x of IsNul => (IsPos xH) | IsNeg => IsNeg | (IsPos p) => (IsPos (xI p)) end.
-
-(** Operation x -> 2*x *)
-
-Definition Zero_suivi_de_mask := [x:positive_mask]
- Cases x of IsNul => IsNul | IsNeg => IsNeg | (IsPos p) => (IsPos (xO p)) end.
-
-(** Operation x -> 2*x-2 *)
-
-Definition double_moins_deux :=
- [x:positive] Cases x of
- (xI x') => (IsPos (xO (xO x')))
- | (xO x') => (IsPos (xO (double_moins_un x')))
- | xH => IsNul
- end.
-
-(** Subtraction of binary positive numbers into a positive numbers mask *)
-
-Fixpoint sub_pos[x,y:positive]:positive_mask :=
- Cases x y of
- | (xI x') (xI y') => (Zero_suivi_de_mask (sub_pos x' y'))
- | (xI x') (xO y') => (Un_suivi_de_mask (sub_pos x' y'))
- | (xI x') xH => (IsPos (xO x'))
- | (xO x') (xI y') => (Un_suivi_de_mask (sub_neg x' y'))
- | (xO x') (xO y') => (Zero_suivi_de_mask (sub_pos x' y'))
- | (xO x') xH => (IsPos (double_moins_un x'))
- | xH xH => IsNul
- | xH _ => IsNeg
- end
-with sub_neg [x,y:positive]:positive_mask :=
- Cases x y of
- (xI x') (xI y') => (Un_suivi_de_mask (sub_neg x' y'))
- | (xI x') (xO y') => (Zero_suivi_de_mask (sub_pos x' y'))
- | (xI x') xH => (IsPos (double_moins_un x'))
- | (xO x') (xI y') => (Zero_suivi_de_mask (sub_neg x' y'))
- | (xO x') (xO y') => (Un_suivi_de_mask (sub_neg x' y'))
- | (xO x') xH => (double_moins_deux x')
- | xH _ => IsNeg
- end.
-
-(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)
-
-Definition true_sub := [x,y:positive]
- Cases (sub_pos x y) of (IsPos z) => z | _ => xH end.
-
-V8Infix "-" true_sub : positive_scope.
-
-(** Multiplication on binary positive numbers *)
-
-Fixpoint times [x:positive] : positive -> positive:=
- [y:positive]
- Cases x of
- (xI x') => (add y (xO (times x' y)))
- | (xO x') => (xO (times x' y))
- | xH => y
- end.
-
-V8Infix "*" times : positive_scope.
-
-(** Division by 2 rounded below but for 1 *)
-
-Definition Zdiv2_pos :=
- [z:positive]Cases z of xH => xH
- | (xO p) => p
- | (xI p) => p
- end.
-
-V8Infix "/" Zdiv2_pos : positive_scope.
-
-(** Comparison on binary positive numbers *)
-
-Fixpoint compare [x,y:positive]: relation -> relation :=
- [r:relation]
- Cases x y of
- | (xI x') (xI y') => (compare x' y' r)
- | (xI x') (xO y') => (compare x' y' SUPERIEUR)
- | (xI x') xH => SUPERIEUR
- | (xO x') (xI y') => (compare x' y' INFERIEUR)
- | (xO x') (xO y') => (compare x' y' r)
- | (xO x') xH => SUPERIEUR
- | xH (xI y') => INFERIEUR
- | xH (xO y') => INFERIEUR
- | xH xH => r
- end.
-
-V8Infix "?=" compare (at level 70, no associativity) : positive_scope.
-
-(**********************************************************************)
-(** Miscellaneous properties of binary positive numbers *)
-
-Lemma ZL11: (x:positive) (x=xH) \/ ~(x=xH).
-Proof.
-Intros x;Case x;Intros; (Left;Reflexivity) Orelse (Right;Discriminate).
-Qed.
-
-(**********************************************************************)
-(** Properties of successor on binary positive numbers *)
-
-(** Specification of [xI] in term of [Psucc] and [xO] *)
-
-Lemma xI_add_un_xO : (x:positive)(xI x) = (add_un (xO x)).
-Proof.
-Reflexivity.
-Qed.
-
-Lemma add_un_discr : (x:positive)x<>(add_un x).
-Proof.
-Intro x; NewDestruct x; Discriminate.
-Qed.
-
-(** Successor and double *)
-
-Lemma is_double_moins_un : (x:positive) (add_un (double_moins_un x)) = (xO x).
-Proof.
-Intro x; NewInduction x as [x IHx|x|]; Simpl; Try Rewrite IHx; Reflexivity.
-Qed.
-
-Lemma double_moins_un_add_un_xI :
- (x:positive)(double_moins_un (add_un x))=(xI x).
-Proof.
-Intro x;NewInduction x as [x IHx|x|]; Simpl; Try Rewrite IHx; Reflexivity.
-Qed.
-
-Lemma ZL1: (y:positive)(xO (add_un y)) = (add_un (add_un (xO y))).
-Proof.
-Intro y; Induction y; Simpl; Auto.
-Qed.
-
-Lemma double_moins_un_xO_discr : (x:positive)(double_moins_un x)<>(xO x).
-Proof.
-Intro x; NewDestruct x; Discriminate.
-Qed.
-
-(** Successor and predecessor *)
-
-Lemma add_un_not_un : (x:positive) (add_un x) <> xH.
-Proof.
-Intro x; NewDestruct x as [x|x|]; Discriminate.
-Qed.
-
-Lemma sub_add_one : (x:positive) (sub_un (add_un x)) = x.
-Proof.
-(Intro x; NewDestruct x as [p|p|]; [Idtac | Idtac | Simpl;Auto]);
-(NewInduction p as [p IHp||]; [Idtac | Reflexivity | Reflexivity ]);
-Simpl; Simpl in IHp; Try Rewrite <- IHp; Reflexivity.
-Qed.
-
-Lemma add_sub_one : (x:positive) (x=xH) \/ (add_un (sub_un x)) = x.
-Proof.
-Intro x; Induction x; [
- Simpl; Auto
-| Simpl; Intros;Right;Apply is_double_moins_un
-| Auto ].
-Qed.
-
-(** Injectivity of successor *)
-
-Lemma add_un_inj : (x,y:positive) (add_un x)=(add_un y) -> x=y.
-Proof.
-Intro x;NewInduction x; Intro y; NewDestruct y as [y|y|]; Simpl;
- Intro H; Discriminate H Orelse Try (Injection H; Clear H; Intro H).
-Rewrite (IHx y H); Reflexivity.
-Absurd (add_un x)=xH; [ Apply add_un_not_un | Assumption ].
-Apply f_equal with 1:=H; Assumption.
-Absurd (add_un y)=xH; [ Apply add_un_not_un | Symmetry; Assumption ].
-Reflexivity.
-Qed.
-
-(**********************************************************************)
-(** Properties of addition on binary positive numbers *)
-
-(** Specification of [Psucc] in term of [Pplus] *)
-
-Lemma ZL12: (q:positive) (add_un q) = (add q xH).
-Proof.
-Intro q; NewDestruct q; Reflexivity.
-Qed.
-
-Lemma ZL12bis: (q:positive) (add_un q) = (add xH q).
-Proof.
-Intro q; NewDestruct q; Reflexivity.
-Qed.
-
-(** Specification of [Pplus_carry] *)
-
-Theorem ZL13: (x,y:positive)(add_carry x y) = (add_un (add x y)).
-Proof.
-(Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto);
- Rewrite IHp; Auto.
-Qed.
-
-(** Commutativity *)
-
-Theorem add_sym : (x,y:positive) (add x y) = (add y x).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto;
- Try Do 2 Rewrite ZL13; Rewrite IHp;Auto.
-Qed.
-
-(** Permutation of [Pplus] and [Psucc] *)
-
-Theorem ZL14: (x,y:positive)(add x (add_un y)) = (add_un (add x y)).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto; [
- Rewrite ZL13; Rewrite IHp; Auto
-| Rewrite ZL13; Auto
-| NewDestruct p;Simpl;Auto
-| Rewrite IHp;Auto
-| NewDestruct p;Simpl;Auto ].
-Qed.
-
-Theorem ZL14bis: (x,y:positive)(add (add_un x) y) = (add_un (add x y)).
-Proof.
-Intros x y; Rewrite add_sym; Rewrite add_sym with x:=x; Apply ZL14.
-Qed.
-
-Theorem ZL15: (q,z:positive) ~z=xH -> (add_carry q (sub_un z)) = (add q z).
-Proof.
-Intros q z H; Elim (add_sub_one z); [
- Intro;Absurd z=xH;Auto
-| Intros E;Pattern 2 z ;Rewrite <- E; Rewrite ZL14; Rewrite ZL13; Trivial ].
-Qed.
-
-(** No neutral for addition on strictly positive numbers *)
-
-Lemma add_no_neutral : (x,y:positive) ~(add y x)=x.
-Proof.
-Intro x;NewInduction x; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H;
- Discriminate H Orelse Injection H; Clear H; Intro H; Apply (IHx y H).
-Qed.
-
-Lemma add_carry_not_add_un : (x,y:positive) ~(add_carry y x)=(add_un x).
-Proof.
-Intros x y H; Absurd (add y x)=x;
- [ Apply add_no_neutral
- | Apply add_un_inj; Rewrite <- ZL13; Assumption ].
-Qed.
-
-(** Simplification *)
-
-Lemma add_carry_add :
- (x,y,z,t:positive) (add_carry x z)=(add_carry y t) -> (add x z)=(add y t).
-Proof.
-Intros x y z t H; Apply add_un_inj; Do 2 Rewrite <- ZL13; Assumption.
-Qed.
-
-Lemma simpl_add_r : (x,y,z:positive) (add x z)=(add y z) -> x=y.
-Proof.
-Intros x y z; Generalize x y; Clear x y.
-NewInduction z as [z|z|].
- NewDestruct x as [x|x|]; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H;
- Discriminate H Orelse Try (Injection H; Clear H; Intro H).
- Rewrite IHz with 1:=(add_carry_add ? ? ? ? H); Reflexivity.
- Absurd (add_carry x z)=(add_un z);
- [ Apply add_carry_not_add_un | Assumption ].
- Rewrite IHz with 1:=H; Reflexivity.
- Symmetry in H; Absurd (add_carry y z)=(add_un z);
- [ Apply add_carry_not_add_un | Assumption ].
- Reflexivity.
- NewDestruct x as [x|x|]; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H;
- Discriminate H Orelse Try (Injection H; Clear H; Intro H).
- Rewrite IHz with 1:=H; Reflexivity.
- Absurd (add x z)=z; [ Apply add_no_neutral | Assumption ].
- Rewrite IHz with 1:=H; Reflexivity.
- Symmetry in H; Absurd y+z=z; [ Apply add_no_neutral | Assumption ].
- Reflexivity.
- Intros H x y; Apply add_un_inj; Do 2 Rewrite ZL12; Assumption.
-Qed.
-
-Lemma simpl_add_l : (x,y,z:positive) (add x y)=(add x z) -> y=z.
-Proof.
-Intros x y z H;Apply simpl_add_r with z:=x;
- Rewrite add_sym with x:=z; Rewrite add_sym with x:=y; Assumption.
-Qed.
-
-Lemma simpl_add_carry_r :
- (x,y,z:positive) (add_carry x z)=(add_carry y z) -> x=y.
-Proof.
-Intros x y z H; Apply simpl_add_r with z:=z; Apply add_carry_add; Assumption.
-Qed.
-
-Lemma simpl_add_carry_l :
- (x,y,z:positive) (add_carry x y)=(add_carry x z) -> y=z.
-Proof.
-Intros x y z H;Apply simpl_add_r with z:=x;
-Rewrite add_sym with x:=z; Rewrite add_sym with x:=y; Apply add_carry_add;
-Assumption.
-Qed.
-
-(** Addition on positive is associative *)
-
-Theorem add_assoc: (x,y,z:positive)(add x (add y z)) = (add (add x y) z).
-Proof.
-Intros x y; Generalize x; Clear x.
-NewInduction y as [y|y|]; Intro x.
- NewDestruct x as [x|x|];
- Intro z; NewDestruct z as [z|z|]; Simpl; Repeat Rewrite ZL13;
- Repeat Rewrite ZL14; Repeat Rewrite ZL14bis; Reflexivity Orelse
- Repeat Apply f_equal with A:=positive; Apply IHy.
- NewDestruct x as [x|x|];
- Intro z; NewDestruct z as [z|z|]; Simpl; Repeat Rewrite ZL13;
- Repeat Rewrite ZL14; Repeat Rewrite ZL14bis; Reflexivity Orelse
- Repeat Apply f_equal with A:=positive; Apply IHy.
- Intro z; Rewrite add_sym with x:=xH; Do 2 Rewrite <- ZL12; Rewrite ZL14bis; Rewrite ZL14; Reflexivity.
-Qed.
-
-(** Commutation of addition with the double of a positive number *)
-
-Lemma add_xI_double_moins_un :
- (p,q:positive)(xO (add p q)) = (add (xI p) (double_moins_un q)).
-Proof.
-Intros; Change (xI p) with (add (xO p) xH).
-Rewrite <- add_assoc; Rewrite <- ZL12bis; Rewrite is_double_moins_un.
-Reflexivity.
-Qed.
-
-Lemma add_xO_double_moins_un :
- (p,q:positive) (double_moins_un (add p q)) = (add (xO p) (double_moins_un q)).
-Proof.
-NewInduction p as [p IHp|p IHp|]; NewDestruct q as [q|q|];
- Simpl; Try Rewrite ZL13; Try Rewrite double_moins_un_add_un_xI;
- Try Rewrite IHp; Try Rewrite add_xI_double_moins_un; Try Reflexivity.
- Rewrite <- is_double_moins_un; Rewrite ZL12bis; Reflexivity.
-Qed.
-
-(** Misc *)
-
-Lemma add_x_x : (x:positive) (add x x) = (xO x).
-Proof.
-Intro x;NewInduction x; Simpl; Try Rewrite ZL13; Try Rewrite IHx; Reflexivity.
-Qed.
-
-(**********************************************************************)
-(** Peano induction on binary positive positive numbers *)
-
-Fixpoint plus_iter [x:positive] : positive -> positive :=
- [y]Cases x of
- | xH => (add_un y)
- | (xO x) => (plus_iter x (plus_iter x y))
- | (xI x) => (plus_iter x (plus_iter x (add_un y)))
- end.
-
-Lemma plus_iter_add : (x,y:positive)(plus_iter x y)=(add x y).
-Proof.
-Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y; Simpl;
- Reflexivity Orelse Do 2 Rewrite IHp; Rewrite add_assoc; Rewrite add_x_x;
- Try Reflexivity.
-Rewrite ZL13; Rewrite <- ZL14; Reflexivity.
-Rewrite ZL12; Reflexivity.
-Qed.
-
-Lemma plus_iter_xO : (x:positive)(plus_iter x x)=(xO x).
-Proof.
-Intro; Rewrite <- add_x_x; Apply plus_iter_add.
-Qed.
-
-Lemma plus_iter_xI : (x:positive)(add_un (plus_iter x x))=(xI x).
-Proof.
-Intro; Rewrite xI_add_un_xO; Rewrite <- add_x_x;
- Apply (f_equal positive); Apply plus_iter_add.
-Qed.
-
-Lemma iterate_add : (P:(positive->Type))
- ((n:positive)(P n) ->(P (add_un n)))->(p,n:positive)(P n) ->
- (P (plus_iter p n)).
-Proof.
-Intros P H; NewInduction p; Simpl; Intros.
-Apply IHp; Apply IHp; Apply H; Assumption.
-Apply IHp; Apply IHp; Assumption.
-Apply H; Assumption.
-Defined.
-
-(** Peano induction *)
-
-Theorem Pind : (P:(positive->Prop))
- (P xH) ->((n:positive)(P n) ->(P (add_un n))) ->(n:positive)(P n).
-Proof.
-Intros P H1 Hsucc n; NewInduction n.
-Rewrite <- plus_iter_xI; Apply Hsucc; Apply iterate_add; Assumption.
-Rewrite <- plus_iter_xO; Apply iterate_add; Assumption.
-Assumption.
-Qed.
-
-(** Peano recursion *)
-
-Definition Prec : (A:Set)A->(positive->A->A)->positive->A :=
- [A;a;f]Fix Prec { Prec [p:positive] : A :=
- Cases p of
- | xH => a
- | (xO p) => (iterate_add [_]A f p p (Prec p))
- | (xI p) => (f (plus_iter p p) (iterate_add [_]A f p p (Prec p)))
- end}.
-
-(** Peano case analysis *)
-
-Theorem Pcase : (P:(positive->Prop))
- (P xH) ->((n:positive)(P (add_un n))) ->(n:positive)(P n).
-Proof.
-Intros; Apply Pind; Auto.
-Qed.
-
-Check
- let fact = (Prec positive xH [p;r](times (add_un p) r)) in
- let seven = (xI (xI xH)) in
- let five_thousand_forty= (xO(xO(xO(xO(xI(xI(xO(xI(xI(xI(xO(xO xH))))))))))))
- in ((refl_equal ? ?) :: (fact seven) = five_thousand_forty).
-
-(**********************************************************************)
-(** Properties of multiplication on binary positive numbers *)
-
-(** One is right neutral for multiplication *)
-
-Lemma times_x_1 : (x:positive) (times x xH) = x.
-Proof.
-Intro x;NewInduction x; Simpl.
- Rewrite IHx; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-(** Right reduction properties for multiplication *)
-
-Lemma times_x_double : (x,y:positive) (times x (xO y)) = (xO (times x y)).
-Proof.
-Intros x y; NewInduction x; Simpl.
- Rewrite IHx; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-Lemma times_x_double_plus_one :
- (x,y:positive) (times x (xI y)) = (add x (xO (times x y))).
-Proof.
-Intros x y; NewInduction x; Simpl.
- Rewrite IHx; Do 2 Rewrite add_assoc; Rewrite add_sym with x:=y; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-(** Commutativity of multiplication *)
-
-Theorem times_sym : (x,y:positive) (times x y) = (times y x).
-Proof.
-Intros x y; NewInduction y; Simpl.
- Rewrite <- IHy; Apply times_x_double_plus_one.
- Rewrite <- IHy; Apply times_x_double.
- Apply times_x_1.
-Qed.
-
-(** Distributivity of multiplication over addition *)
-
-Theorem times_add_distr:
- (x,y,z:positive) (times x (add y z)) = (add (times x y) (times x z)).
-Proof.
-Intros x y z; NewInduction x; Simpl.
- Rewrite IHx; Rewrite <- add_assoc with y := (xO (times x y));
- Rewrite -> add_assoc with x := (xO (times x y));
- Rewrite -> add_sym with x := (xO (times x y));
- Rewrite <- add_assoc with y := (xO (times x y));
- Rewrite -> add_assoc with y := z; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-Theorem times_add_distr_l:
- (x,y,z:positive) (times (add x y) z) = (add (times x z) (times y z)).
-Proof.
-Intros x y z; Do 3 Rewrite times_sym with y:=z; Apply times_add_distr.
-Qed.
-
-(** Associativity of multiplication *)
-
-Theorem times_assoc :
- ((x,y,z:positive) (times x (times y z))= (times (times x y) z)).
-Proof.
-Intro x;NewInduction x as [x|x|]; Simpl; Intros y z.
- Rewrite IHx; Rewrite times_add_distr_l; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-(** Parity properties of multiplication *)
-
-Lemma times_discr_xO_xI :
- (x,y,z:positive)(times (xI x) z)<>(times (xO y) z).
-Proof.
-Intros x y z; NewInduction z as [|z IHz|]; Try Discriminate.
-Intro H; Apply IHz; Clear IHz.
-Do 2 Rewrite times_x_double in H.
-Injection H; Clear H; Intro H; Exact H.
-Qed.
-
-Lemma times_discr_xO : (x,y:positive)(times (xO x) y)<>y.
-Proof.
-Intros x y; NewInduction y; Try Discriminate.
-Rewrite times_x_double; Injection; Assumption.
-Qed.
-
-(** Simplification properties of multiplication *)
-
-Theorem simpl_times_r : (x,y,z:positive) (times x z)=(times y z) -> x=y.
-Proof.
-Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|]; Intros z H;
- Reflexivity Orelse Apply (f_equal positive) Orelse Apply False_ind.
- Simpl in H; Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double;
- Apply simpl_add_l with 1 := H.
- Apply times_discr_xO_xI with 1 := H.
- Simpl in H; Rewrite add_sym in H; Apply add_no_neutral with 1 := H.
- Symmetry in H; Apply times_discr_xO_xI with 1 := H.
- Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double; Assumption.
- Apply times_discr_xO with 1:=H.
- Simpl in H; Symmetry in H; Rewrite add_sym in H;
- Apply add_no_neutral with 1 := H.
- Symmetry in H; Apply times_discr_xO with 1:=H.
-Qed.
-
-Theorem simpl_times_l : (x,y,z:positive) (times z x)=(times z y) -> x=y.
-Proof.
-Intros x y z H; Apply simpl_times_r with z:=z.
-Rewrite times_sym with x:=x; Rewrite times_sym with x:=y; Assumption.
-Qed.
-
-(** Inversion of multiplication *)
-
-Lemma times_one_inversion_l : (x,y:positive) (times x y)=xH -> x=xH.
-Proof.
-Intros x y; NewDestruct x; Simpl.
- NewDestruct y; Intro; Discriminate.
- Intro; Discriminate.
- Reflexivity.
-Qed.
-
-(**********************************************************************)
-(** Properties of comparison on binary positive numbers *)
-
-Theorem compare_convert1 :
- (x,y:positive)
- ~(compare x y SUPERIEUR) = EGAL /\ ~(compare x y INFERIEUR) = EGAL.
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|];
- Split;Simpl;Auto;
- Discriminate Orelse (Elim (IHp q); Auto).
-Qed.
-
-Theorem compare_convert_EGAL : (x,y:positive) (compare x y EGAL) = EGAL -> x=y.
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y as [q|q|];Simpl;Auto; Intro H; [
- Rewrite (IHp q); Trivial
-| Absurd (compare p q SUPERIEUR)=EGAL ;
- [ Elim (compare_convert1 p q);Auto | Assumption ]
-| Discriminate H
-| Absurd (compare p q INFERIEUR) = EGAL;
- [ Elim (compare_convert1 p q);Auto | Assumption ]
-| Rewrite (IHp q);Auto
-| Discriminate H
-| Discriminate H
-| Discriminate H ].
-Qed.
-
-Lemma ZLSI:
- (x,y:positive) (compare x y SUPERIEUR) = INFERIEUR ->
- (compare x y EGAL) = INFERIEUR.
-Proof.
-Intro x; Induction x;Intro y; Induction y;Simpl;Auto;
- Discriminate Orelse Intros H;Discriminate H.
-Qed.
-
-Lemma ZLIS:
- (x,y:positive) (compare x y INFERIEUR) = SUPERIEUR ->
- (compare x y EGAL) = SUPERIEUR.
-Proof.
-Intro x; Induction x;Intro y; Induction y;Simpl;Auto;
- Discriminate Orelse Intros H;Discriminate H.
-Qed.
-
-Lemma ZLII:
- (x,y:positive) (compare x y INFERIEUR) = INFERIEUR ->
- (compare x y EGAL) = INFERIEUR \/ x = y.
-Proof.
-(Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
- Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
- Auto.
-Qed.
-
-Lemma ZLSS:
- (x,y:positive) (compare x y SUPERIEUR) = SUPERIEUR ->
- (compare x y EGAL) = SUPERIEUR \/ x = y.
-Proof.
-(Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
- Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
- Auto.
-Qed.
-
-Lemma Dcompare : (r:relation) r=EGAL \/ r = INFERIEUR \/ r = SUPERIEUR.
-Proof.
-Induction r; Auto.
-Qed.
-
-Tactic Definition ElimPcompare c1 c2:=
- Elim (Dcompare (compare c1 c2 EGAL)); [ Idtac |
- Let x = FreshId "H" In Intro x; Case x; Clear x ].
-
-Theorem convert_compare_EGAL: (x:positive)(compare x x EGAL)=EGAL.
-Intro x; Induction x; Auto.
-Qed.
-
-Lemma Pcompare_antisym :
- (x,y:positive)(r:relation) (Op (compare x y r)) = (compare y x (Op r)).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y;
-Intro r; Reflexivity Orelse (Symmetry; Assumption) Orelse Discriminate H
-Orelse Simpl; Apply IHp Orelse Try Rewrite IHp; Try Reflexivity.
-Qed.
-
-Lemma ZC1:
- (x,y:positive)(compare x y EGAL)=SUPERIEUR -> (compare y x EGAL)=INFERIEUR.
-Proof.
-Intros; Change EGAL with (Op EGAL).
-Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
-Qed.
-
-Lemma ZC2:
- (x,y:positive)(compare x y EGAL)=INFERIEUR -> (compare y x EGAL)=SUPERIEUR.
-Proof.
-Intros; Change EGAL with (Op EGAL).
-Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
-Qed.
-
-Lemma ZC3: (x,y:positive)(compare x y EGAL)=EGAL -> (compare y x EGAL)=EGAL.
-Proof.
-Intros; Change EGAL with (Op EGAL).
-Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
-Qed.
-
-Lemma ZC4: (x,y:positive) (compare x y EGAL) = (Op (compare y x EGAL)).
-Proof.
-Intros; Change 1 EGAL with (Op EGAL).
-Symmetry; Apply Pcompare_antisym.
-Qed.
-
-(**********************************************************************)
-(** Properties of subtraction on binary positive numbers *)
-
-Lemma ZS: (p:positive_mask) (Zero_suivi_de_mask p) = IsNul -> p = IsNul.
-Proof.
-NewDestruct p; Simpl; [ Trivial | Discriminate 1 | Discriminate 1 ].
-Qed.
-
-Lemma US: (p:positive_mask) ~(Un_suivi_de_mask p)=IsNul.
-Proof.
-Induction p; Intros; Discriminate.
-Qed.
-
-Lemma USH: (p:positive_mask) (Un_suivi_de_mask p) = (IsPos xH) -> p = IsNul.
-Proof.
-NewDestruct p; Simpl; [ Trivial | Discriminate 1 | Discriminate 1 ].
-Qed.
-
-Lemma ZSH: (p:positive_mask) ~(Zero_suivi_de_mask p)= (IsPos xH).
-Proof.
-Induction p; Intros; Discriminate.
-Qed.
-
-Theorem sub_pos_x_x : (x:positive) (sub_pos x x) = IsNul.
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|]; [
- Simpl; Rewrite IHp;Simpl; Trivial
-| Simpl; Rewrite IHp;Auto
-| Auto ].
-Qed.
-
-Lemma ZL10: (x,y:positive)
- (sub_pos x y) = (IsPos xH) -> (sub_neg x y) = IsNul.
-Proof.
-Intro x; NewInduction x as [p|p|]; Intro y; NewDestruct y as [q|q|]; Simpl;
- Intro H; Try Discriminate H; [
- Absurd (Zero_suivi_de_mask (sub_pos p q))=(IsPos xH);
- [ Apply ZSH | Assumption ]
-| Assert Heq : (sub_pos p q)=IsNul;
- [ Apply USH;Assumption | Rewrite Heq; Reflexivity ]
-| Assert Heq : (sub_neg p q)=IsNul;
- [ Apply USH;Assumption | Rewrite Heq; Reflexivity ]
-| Absurd (Zero_suivi_de_mask (sub_pos p q))=(IsPos xH);
- [ Apply ZSH | Assumption ]
-| NewDestruct p; Simpl; [ Discriminate H | Discriminate H | Reflexivity ] ].
-Qed.
-
-(** Properties of subtraction valid only for x>y *)
-
-Lemma sub_pos_SUPERIEUR:
- (x,y:positive)(compare x y EGAL)=SUPERIEUR ->
- (EX h:positive | (sub_pos x y) = (IsPos h) /\ (add y h) = x /\
- (h = xH \/ (sub_neg x y) = (IsPos (sub_un h)))).
-Proof.
-Intro x;NewInduction x as [p|p|];Intro y; NewDestruct y as [q|q|]; Simpl; Intro H;
- Try Discriminate H.
- NewDestruct (IHp q H) as [z [H4 [H6 H7]]]; Exists (xO z); Split.
- Rewrite H4; Reflexivity.
- Split.
- Simpl; Rewrite H6; Reflexivity.
- Right; Clear H6; NewDestruct (ZL11 z) as [H8|H8]; [
- Rewrite H8; Rewrite H8 in H4;
- Rewrite ZL10; [ Reflexivity | Assumption ]
- | Clear H4; NewDestruct H7 as [H9|H9]; [
- Absurd z=xH; Assumption
- | Rewrite H9; Clear H9; NewDestruct z;
- [ Reflexivity | Reflexivity | Absurd xH=xH; Trivial ]]].
- Case ZLSS with 1:=H; [
- Intros H3;Elim (IHp q H3); Intros z H4; Exists (xI z);
- Elim H4;Intros H5 H6;Elim H6;Intros H7 H8; Split; [
- Simpl;Rewrite H5;Auto
- | Split; [
- Simpl; Rewrite H7; Trivial
- | Right;
- Change (Zero_suivi_de_mask (sub_pos p q))=(IsPos (sub_un (xI z)));
- Rewrite H5; Auto ]]
- | Intros H3; Exists xH; Rewrite H3; Split; [
- Simpl; Rewrite sub_pos_x_x; Auto
- | Split; Auto ]].
- Exists (xO p); Auto.
- NewDestruct (IHp q) as [z [H4 [H6 H7]]].
- Apply ZLIS; Assumption.
- NewDestruct (ZL11 z) as [vZ|]; [
- Exists xH; Split; [
- Rewrite ZL10; [ Reflexivity | Rewrite vZ in H4;Assumption ]
- | Split; [
- Simpl; Rewrite ZL12; Rewrite <- vZ; Rewrite H6; Trivial
- | Auto ]]
- | Exists (xI (sub_un z)); NewDestruct H7 as [|H8];[
- Absurd z=xH;Assumption
- | Split; [
- Rewrite H8; Trivial
- | Split; [ Simpl; Rewrite ZL15; [
- Rewrite H6;Trivial
- | Assumption ]
- | Right; Rewrite H8; Reflexivity]]]].
- NewDestruct (IHp q H) as [z [H4 [H6 H7]]].
- Exists (xO z); Split; [
- Rewrite H4;Auto
- | Split; [
- Simpl;Rewrite H6;Reflexivity
- | Right;
- Change (Un_suivi_de_mask (sub_neg p q))=(IsPos (double_moins_un z));
- NewDestruct (ZL11 z) as [H8|H8]; [
- Rewrite H8; Simpl;
- Assert H9:(sub_neg p q)=IsNul;[
- Apply ZL10;Rewrite <- H8;Assumption
- | Rewrite H9;Reflexivity ]
- | NewDestruct H7 as [H9|H9]; [
- Absurd z=xH;Auto
- | Rewrite H9; NewDestruct z; Simpl;
- [ Reflexivity
- | Reflexivity
- | Absurd xH=xH; [Assumption | Reflexivity]]]]]].
- Exists (double_moins_un p); Split; [
- Reflexivity
- | Clear IHp; Split; [
- NewDestruct p; Simpl; [
- Reflexivity
- | Rewrite is_double_moins_un; Reflexivity
- | Reflexivity ]
- | NewDestruct p; [Right|Right|Left]; Reflexivity ]].
-Qed.
-
-Theorem sub_add:
-(x,y:positive) (compare x y EGAL) = SUPERIEUR -> (add y (true_sub x y)) = x.
-Proof.
-Intros x y H;Elim sub_pos_SUPERIEUR with 1:=H;
-Intros z H1;Elim H1;Intros H2 H3; Elim H3;Intros H4 H5;
-Unfold true_sub ;Rewrite H2; Exact H4.
-Qed.
-
diff --git a/theories7/NArith/NArith.v b/theories7/NArith/NArith.v
deleted file mode 100644
index d924ae2e..00000000
--- a/theories7/NArith/NArith.v
+++ /dev/null
@@ -1,14 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: NArith.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ *)
-
-(** Library for binary natural numbers *)
-
-Require Export BinPos.
-Require Export BinNat.
diff --git a/theories7/NArith/Pnat.v b/theories7/NArith/Pnat.v
deleted file mode 100644
index d62661ed..00000000
--- a/theories7/NArith/Pnat.v
+++ /dev/null
@@ -1,472 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Pnat.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ i*)
-
-Require BinPos.
-
-(**********************************************************************)
-(** Properties of the injection from binary positive numbers to Peano
- natural numbers *)
-
-(** Original development by Pierre Crégut, CNET, Lannion, France *)
-
-Require Le.
-Require Lt.
-Require Gt.
-Require Plus.
-Require Mult.
-Require Minus.
-
-(** [nat_of_P] is a morphism for addition *)
-
-Lemma convert_add_un :
- (x:positive)(m:nat)
- (positive_to_nat (add_un x) m) = (plus m (positive_to_nat x m)).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|]; Simpl; Auto; Intro m; Rewrite IHp;
-Rewrite plus_assoc_l; Trivial.
-Qed.
-
-Lemma cvt_add_un :
- (p:positive) (convert (add_un p)) = (S (convert p)).
-Proof.
- Intro; Change (S (convert p)) with (plus (S O) (convert p));
- Unfold convert; Apply convert_add_un.
-Qed.
-
-Theorem convert_add_carry :
- (x,y:positive)(m:nat)
- (positive_to_nat (add_carry x y) m) =
- (plus m (positive_to_nat (add x y) m)).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y; Simpl; Auto with arith; Intro m; [
- Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith
-| Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith
-| Rewrite convert_add_un; Rewrite plus_assoc_l; Trivial with arith
-| Rewrite convert_add_un; Apply plus_assoc_r ].
-Qed.
-
-Theorem cvt_carry :
- (x,y:positive)(convert (add_carry x y)) = (S (convert (add x y))).
-Proof.
-Intros;Unfold convert; Rewrite convert_add_carry; Simpl; Trivial with arith.
-Qed.
-
-Theorem add_verif :
- (x,y:positive)(m:nat)
- (positive_to_nat (add x y) m) =
- (plus (positive_to_nat x m) (positive_to_nat y m)).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y;Simpl;Auto with arith; [
- Intros m;Rewrite convert_add_carry; Rewrite IHp;
- Rewrite plus_assoc_r; Rewrite plus_assoc_r;
- Rewrite (plus_permute m (positive_to_nat p (plus m m))); Trivial with arith
-| Intros m; Rewrite IHp; Apply plus_assoc_l
-| Intros m; Rewrite convert_add_un;
- Rewrite (plus_sym (plus m (positive_to_nat p (plus m m))));
- Apply plus_assoc_r
-| Intros m; Rewrite IHp; Apply plus_permute
-| Intros m; Rewrite convert_add_un; Apply plus_assoc_r ].
-Qed.
-
-Theorem convert_add:
- (x,y:positive) (convert (add x y)) = (plus (convert x) (convert y)).
-Proof.
-Intros x y; Exact (add_verif x y (S O)).
-Qed.
-
-(** [Pmult_nat] is a morphism for addition *)
-
-Lemma ZL2:
- (y:positive)(m:nat)
- (positive_to_nat y (plus m m)) =
- (plus (positive_to_nat y m) (positive_to_nat y m)).
-Proof.
-Intro y; NewInduction y as [p H|p H|]; Intro m; [
- Simpl; Rewrite H; Rewrite plus_assoc_r;
- Rewrite (plus_permute m (positive_to_nat p (plus m m)));
- Rewrite plus_assoc_r; Auto with arith
-| Simpl; Rewrite H; Auto with arith
-| Simpl; Trivial with arith ].
-Qed.
-
-Lemma ZL6:
- (p:positive) (positive_to_nat p (S (S O))) = (plus (convert p) (convert p)).
-Proof.
-Intro p;Change (2) with (plus (S O) (S O)); Rewrite ZL2; Trivial.
-Qed.
-
-(** [nat_of_P] is a morphism for multiplication *)
-
-Theorem times_convert :
- (x,y:positive) (convert (times x y)) = (mult (convert x) (convert y)).
-Proof.
-Intros x y; NewInduction x as [ x' H | x' H | ]; [
- Change (times (xI x') y) with (add y (xO (times x' y))); Rewrite convert_add;
- Unfold 2 3 convert; Simpl; Do 2 Rewrite ZL6; Rewrite H;
- Rewrite -> mult_plus_distr; Reflexivity
-| Unfold 1 2 convert; Simpl; Do 2 Rewrite ZL6;
- Rewrite H; Rewrite mult_plus_distr; Reflexivity
-| Simpl; Rewrite <- plus_n_O; Reflexivity ].
-Qed.
-V7only [
- Comments "Compatibility with the old version of times and times_convert".
- Syntactic Definition times1 :=
- [x:positive;_:positive->positive;y:positive](times x y).
- Syntactic Definition times1_convert :=
- [x,y:positive;_:positive->positive](times_convert x y).
-].
-
-(** [nat_of_P] maps to the strictly positive subset of [nat] *)
-
-Lemma ZL4: (y:positive) (EX h:nat |(convert y)=(S h)).
-Proof.
-Intro y; NewInduction y as [p H|p H|]; [
- NewDestruct H as [x H1]; Exists (plus (S x) (S x));
- Unfold convert ;Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2; Unfold convert in H1;
- Rewrite H1; Auto with arith
-| NewDestruct H as [x H2]; Exists (plus x (S x)); Unfold convert;
- Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2;Unfold convert in H2; Rewrite H2; Auto with arith
-| Exists O ;Auto with arith ].
-Qed.
-
-(** Extra lemmas on [lt] on Peano natural numbers *)
-
-Lemma ZL7:
- (m,n:nat) (lt m n) -> (lt (plus m m) (plus n n)).
-Proof.
-Intros m n H; Apply lt_trans with m:=(plus m n); [
- Apply lt_reg_l with 1:=H
-| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ].
-Qed.
-
-Lemma ZL8:
- (m,n:nat) (lt m n) -> (lt (S (plus m m)) (plus n n)).
-Proof.
-Intros m n H; Apply le_lt_trans with m:=(plus m n); [
- Change (lt (plus m m) (plus m n)) ; Apply lt_reg_l with 1:=H
-| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ].
-Qed.
-
-(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
- from [compare] on [positive])
-
- Part 1: [lt] on [positive] is finer than [lt] on [nat]
-*)
-
-Lemma compare_convert_INFERIEUR :
- (x,y:positive) (compare x y EGAL) = INFERIEUR ->
- (lt (convert x) (convert y)).
-Proof.
-Intro x; NewInduction x as [p H|p H|];Intro y; NewDestruct y as [q|q|];
- Intro H2; [
- Unfold convert ;Simpl; Apply lt_n_S;
- Do 2 Rewrite ZL6; Apply ZL7; Apply H; Simpl in H2; Assumption
-| Unfold convert ;Simpl; Do 2 Rewrite ZL6;
- Apply ZL8; Apply H;Simpl in H2; Apply ZLSI;Assumption
-| Simpl; Discriminate H2
-| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Elim (ZLII p q H2); [
- Intros H3;Apply lt_S;Apply ZL7; Apply H;Apply H3
- | Intros E;Rewrite E;Apply lt_n_Sn]
-| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Apply ZL7;Apply H;Assumption
-| Simpl; Discriminate H2
-| Unfold convert ;Simpl; Apply lt_n_S; Rewrite ZL6;
- Elim (ZL4 q);Intros h H3; Rewrite H3;Simpl; Apply lt_O_Sn
-| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 q);Intros h H3;
- Rewrite H3; Simpl; Rewrite <- plus_n_Sm; Apply lt_n_S; Apply lt_O_Sn
-| Simpl; Discriminate H2 ].
-Qed.
-
-(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
- from [compare] on [positive])
-
- Part 1: [gt] on [positive] is finer than [gt] on [nat]
-*)
-
-Lemma compare_convert_SUPERIEUR :
- (x,y:positive) (compare x y EGAL)=SUPERIEUR -> (gt (convert x) (convert y)).
-Proof.
-Unfold gt; Intro x; NewInduction x as [p H|p H|];
- Intro y; NewDestruct y as [q|q|]; Intro H2; [
- Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Apply lt_n_S; Apply ZL7; Apply H;Assumption
-| Simpl; Unfold convert ;Simpl; Do 2 Rewrite ZL6;
- Elim (ZLSS p q H2); [
- Intros H3;Apply lt_S;Apply ZL7;Apply H;Assumption
- | Intros E;Rewrite E;Apply lt_n_Sn]
-| Unfold convert ;Simpl; Rewrite ZL6;Elim (ZL4 p);
- Intros h H3;Rewrite H3;Simpl; Apply lt_n_S; Apply lt_O_Sn
-| Simpl;Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Apply ZL8; Apply H; Apply ZLIS; Assumption
-| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Apply ZL7;Apply H;Assumption
-| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 p);
- Intros h H3;Rewrite H3;Simpl; Rewrite <- plus_n_Sm;Apply lt_n_S;
- Apply lt_O_Sn
-| Simpl; Discriminate H2
-| Simpl; Discriminate H2
-| Simpl; Discriminate H2 ].
-Qed.
-
-(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
- from [compare] on [positive])
-
- Part 2: [lt] on [nat] is finer than [lt] on [positive]
-*)
-
-Lemma convert_compare_INFERIEUR :
- (x,y:positive)(lt (convert x) (convert y)) -> (compare x y EGAL) = INFERIEUR.
-Proof.
-Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [
- Intros E; Rewrite (compare_convert_EGAL x y E);
- Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ]
-| Intros H;Elim H; [
- Auto
- | Intros H1 H2; Absurd (lt (convert x) (convert y)); [
- Apply lt_not_sym; Change (gt (convert x) (convert y));
- Apply compare_convert_SUPERIEUR; Assumption
- | Assumption ]]].
-Qed.
-
-(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
- from [compare] on [positive])
-
- Part 2: [gt] on [nat] is finer than [gt] on [positive]
-*)
-
-Lemma convert_compare_SUPERIEUR :
- (x,y:positive)(gt (convert x) (convert y)) -> (compare x y EGAL) = SUPERIEUR.
-Proof.
-Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [
- Intros E; Rewrite (compare_convert_EGAL x y E);
- Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ]
-| Intros H;Elim H; [
- Intros H1 H2; Absurd (lt (convert y) (convert x)); [
- Apply lt_not_sym; Apply compare_convert_INFERIEUR; Assumption
- | Assumption ]
- | Auto]].
-Qed.
-
-(** [nat_of_P] is strictly positive *)
-
-Lemma compare_positive_to_nat_O :
- (p:positive)(m:nat)(le m (positive_to_nat p m)).
-NewInduction p; Simpl; Auto with arith.
-Intro m; Apply le_trans with (plus m m); Auto with arith.
-Qed.
-
-Lemma compare_convert_O : (p:positive)(lt O (convert p)).
-Intro; Unfold convert; Apply lt_le_trans with (S O); Auto with arith.
-Apply compare_positive_to_nat_O.
-Qed.
-
-(** Pmult_nat permutes with multiplication *)
-
-Lemma positive_to_nat_mult : (p:positive) (n,m:nat)
- (positive_to_nat p (mult m n))=(mult m (positive_to_nat p n)).
-Proof.
- Induction p. Intros. Simpl. Rewrite mult_plus_distr_r. Rewrite <- (mult_plus_distr_r m n n).
- Rewrite (H (plus n n) m). Reflexivity.
- Intros. Simpl. Rewrite <- (mult_plus_distr_r m n n). Apply H.
- Trivial.
-Qed.
-
-Lemma positive_to_nat_2 : (p:positive)
- (positive_to_nat p (2))=(mult (2) (positive_to_nat p (1))).
-Proof.
- Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
-Qed.
-
-Lemma positive_to_nat_4 : (p:positive)
- (positive_to_nat p (4))=(mult (2) (positive_to_nat p (2))).
-Proof.
- Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
-Qed.
-
-(** Mapping of xH, xO and xI through [nat_of_P] *)
-
-Lemma convert_xH : (convert xH)=(1).
-Proof.
- Reflexivity.
-Qed.
-
-Lemma convert_xO : (p:positive) (convert (xO p))=(mult (2) (convert p)).
-Proof.
- Induction p. Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2.
- Rewrite positive_to_nat_4. Rewrite H. Simpl. Rewrite <- plus_Snm_nSm. Reflexivity.
- Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
- Rewrite H. Reflexivity.
- Reflexivity.
-Qed.
-
-Lemma convert_xI : (p:positive) (convert (xI p))=(S (mult (2) (convert p))).
-Proof.
- Induction p. Unfold convert. Simpl. Intro p0. Intro. Rewrite positive_to_nat_2.
- Rewrite positive_to_nat_4; Injection H; Intro H1; Rewrite H1; Rewrite <- plus_Snm_nSm; Reflexivity.
- Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
- Injection H; Intro H1; Rewrite H1; Reflexivity.
- Reflexivity.
-Qed.
-
-(**********************************************************************)
-(** Properties of the shifted injection from Peano natural numbers to
- binary positive numbers *)
-
-(** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *)
-
-Theorem bij1 : (m:nat) (convert (anti_convert m)) = (S m).
-Proof.
-Intro m; NewInduction m as [|n H]; [
- Reflexivity
-| Simpl; Rewrite cvt_add_un; Rewrite H; Auto ].
-Qed.
-
-(** Miscellaneous lemmas on [P_of_succ_nat] *)
-
-Lemma ZL3: (x:nat) (add_un (anti_convert (plus x x))) = (xO (anti_convert x)).
-Proof.
-Intro x; NewInduction x as [|n H]; [
- Simpl; Auto with arith
-| Simpl; Rewrite plus_sym; Simpl; Rewrite H; Rewrite ZL1;Auto with arith].
-Qed.
-
-Lemma ZL5: (x:nat) (anti_convert (plus (S x) (S x))) = (xI (anti_convert x)).
-Proof.
-Intro x; NewInduction x as [|n H];Simpl; [
- Auto with arith
-| Rewrite <- plus_n_Sm; Simpl; Simpl in H; Rewrite H; Auto with arith].
-Qed.
-
-(** Composition of [nat_of_P] and [P_of_succ_nat] is successor on [positive] *)
-
-Theorem bij2 : (x:positive) (anti_convert (convert x)) = (add_un x).
-Proof.
-Intro x; NewInduction x as [p H|p H|]; [
- Simpl; Rewrite <- H; Change (2) with (plus (1) (1));
- Rewrite ZL2; Elim (ZL4 p);
- Unfold convert; Intros n H1;Rewrite H1; Rewrite ZL3; Auto with arith
-| Unfold convert ;Simpl; Change (2) with (plus (1) (1));
- Rewrite ZL2;
- Rewrite <- (sub_add_one
- (anti_convert
- (plus (positive_to_nat p (S O)) (positive_to_nat p (S O)))));
- Rewrite <- (sub_add_one (xI p));
- Simpl;Rewrite <- H;Elim (ZL4 p); Unfold convert ;Intros n H1;Rewrite H1;
- Rewrite ZL5; Simpl; Trivial with arith
-| Unfold convert; Simpl; Auto with arith ].
-Qed.
-
-(** Composition of [nat_of_P], [P_of_succ_nat] and [Ppred] is identity
- on [positive] *)
-
-Theorem bij3: (x:positive)(sub_un (anti_convert (convert x))) = x.
-Proof.
-Intros x; Rewrite bij2; Rewrite sub_add_one; Trivial with arith.
-Qed.
-
-(**********************************************************************)
-(** Extra properties of the injection from binary positive numbers to Peano
- natural numbers *)
-
-(** [nat_of_P] is a morphism for subtraction on positive numbers *)
-
-Theorem true_sub_convert:
- (x,y:positive) (compare x y EGAL) = SUPERIEUR ->
- (convert (true_sub x y)) = (minus (convert x) (convert y)).
-Proof.
-Intros x y H; Apply plus_reg_l with (convert y);
-Rewrite le_plus_minus_r; [
- Rewrite <- convert_add; Rewrite sub_add; Auto with arith
-| Apply lt_le_weak; Exact (compare_convert_SUPERIEUR x y H)].
-Qed.
-
-(** [nat_of_P] is injective *)
-
-Lemma convert_intro : (x,y:positive)(convert x)=(convert y) -> x=y.
-Proof.
-Intros x y H;Rewrite <- (bij3 x);Rewrite <- (bij3 y); Rewrite H; Trivial with arith.
-Qed.
-
-Lemma ZL16: (p,q:positive)(lt (minus (convert p) (convert q)) (convert p)).
-Proof.
-Intros p q; Elim (ZL4 p);Elim (ZL4 q); Intros h H1 i H2;
-Rewrite H1;Rewrite H2; Simpl;Unfold lt; Apply le_n_S; Apply le_minus.
-Qed.
-
-Lemma ZL17: (p,q:positive)(lt (convert p) (convert (add p q))).
-Proof.
-Intros p q; Rewrite convert_add;Unfold lt;Elim (ZL4 q); Intros k H;Rewrite H;
-Rewrite plus_sym;Simpl; Apply le_n_S; Apply le_plus_r.
-Qed.
-
-(** Comparison and subtraction *)
-
-Lemma compare_true_sub_right :
- (p,q,z:positive)
- (compare q p EGAL)=INFERIEUR->
- (compare z p EGAL)=SUPERIEUR->
- (compare z q EGAL)=SUPERIEUR->
- (compare (true_sub z p) (true_sub z q) EGAL)=INFERIEUR.
-Proof.
-Intros; Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Apply simpl_lt_plus_l with p:=(convert q); Rewrite le_plus_minus_r; [
- Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert p);
- Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [
- Rewrite (plus_sym (convert p)); Apply lt_reg_l;
- Apply compare_convert_INFERIEUR; Assumption
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;
- Apply ZC1; Assumption ]
- | Apply lt_le_weak;Apply compare_convert_INFERIEUR;
- Apply ZC1; Assumption ]
- | Assumption ]
- | Assumption ].
-Qed.
-
-Lemma compare_true_sub_left :
- (p,q,z:positive)
- (compare q p EGAL)=INFERIEUR->
- (compare p z EGAL)=SUPERIEUR->
- (compare q z EGAL)=SUPERIEUR->
- (compare (true_sub q z) (true_sub p z) EGAL)=INFERIEUR.
-Proof.
-Intros p q z; Intros;
- Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Unfold gt; Apply simpl_lt_plus_l with p:=(convert z);
- Rewrite le_plus_minus_r; [
- Rewrite le_plus_minus_r; [
- Apply compare_convert_INFERIEUR;Assumption
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;Assumption]
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1; Assumption]
- | Assumption]
-| Assumption].
-Qed.
-
-(** Distributivity of multiplication over subtraction *)
-
-Theorem times_true_sub_distr:
- (x,y,z:positive) (compare y z EGAL) = SUPERIEUR ->
- (times x (true_sub y z)) = (true_sub (times x y) (times x z)).
-Proof.
-Intros x y z H; Apply convert_intro;
-Rewrite times_convert; Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Do 2 Rewrite times_convert;
- Do 3 Rewrite (mult_sym (convert x));Apply mult_minus_distr
- | Apply convert_compare_SUPERIEUR; Do 2 Rewrite times_convert;
- Unfold gt; Elim (ZL4 x);Intros h H1;Rewrite H1; Apply lt_mult_left;
- Exact (compare_convert_SUPERIEUR y z H) ]
-| Assumption ].
-Qed.
-