diff options
Diffstat (limited to 'theories7/Logic/Eqdep.v')
-rwxr-xr-x | theories7/Logic/Eqdep.v | 183 |
1 files changed, 183 insertions, 0 deletions
diff --git a/theories7/Logic/Eqdep.v b/theories7/Logic/Eqdep.v new file mode 100755 index 00000000..fc2dfe52 --- /dev/null +++ b/theories7/Logic/Eqdep.v @@ -0,0 +1,183 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Eqdep.v,v 1.2.2.1 2004/07/16 19:31:29 herbelin Exp $ i*) + +(** This file defines dependent equality and shows its equivalence with + equality on dependent pairs (inhabiting sigma-types). It axiomatizes + the invariance by substitution of reflexive equality proofs and + shows the equivalence between the 4 following statements + + - Invariance by Substitution of Reflexive Equality Proofs. + - Injectivity of Dependent Equality + - Uniqueness of Identity Proofs + - Uniqueness of Reflexive Identity Proofs + - Streicher's Axiom K + + These statements are independent of the calculus of constructions [2]. + + References: + + [1] T. Streicher, Semantical Investigations into Intensional Type Theory, + Habilitationsschrift, LMU München, 1993. + [2] M. Hofmann, T. Streicher, The groupoid interpretation of type theory, + Proceedings of the meeting Twenty-five years of constructive + type theory, Venice, Oxford University Press, 1998 +*) + +Section Dependent_Equality. + +Variable U : Type. +Variable P : U->Type. + +(** Dependent equality *) + +Inductive eq_dep [p:U;x:(P p)] : (q:U)(P q)->Prop := + eq_dep_intro : (eq_dep p x p x). +Hint constr_eq_dep : core v62 := Constructors eq_dep. + +Lemma eq_dep_sym : (p,q:U)(x:(P p))(y:(P q))(eq_dep p x q y)->(eq_dep q y p x). +Proof. +NewDestruct 1; Auto. +Qed. +Hints Immediate eq_dep_sym : core v62. + +Lemma eq_dep_trans : (p,q,r:U)(x:(P p))(y:(P q))(z:(P r)) + (eq_dep p x q y)->(eq_dep q y r z)->(eq_dep p x r z). +Proof. +NewDestruct 1; Auto. +Qed. + +Inductive eq_dep1 [p:U;x:(P p);q:U;y:(P q)] : Prop := + eq_dep1_intro : (h:q=p) + (x=(eq_rect U q P y p h))->(eq_dep1 p x q y). + +Scheme eq_indd := Induction for eq Sort Prop. + +Lemma eq_dep1_dep : + (p:U)(x:(P p))(q:U)(y:(P q))(eq_dep1 p x q y)->(eq_dep p x q y). +Proof. +NewDestruct 1 as [eq_qp H]. +NewDestruct eq_qp using eq_indd. +Rewrite H. +Apply eq_dep_intro. +Qed. + +Lemma eq_dep_dep1 : + (p,q:U)(x:(P p))(y:(P q))(eq_dep p x q y)->(eq_dep1 p x q y). +Proof. +NewDestruct 1. +Apply eq_dep1_intro with (refl_equal U p). +Simpl; Trivial. +Qed. + +(** Invariance by Substitution of Reflexive Equality Proofs *) + +Axiom eq_rect_eq : (p:U)(Q:U->Type)(x:(Q p))(h:p=p) + x=(eq_rect U p Q x p h). + +(** Injectivity of Dependent Equality is a consequence of *) +(** Invariance by Substitution of Reflexive Equality Proof *) + +Lemma eq_dep1_eq : (p:U)(x,y:(P p))(eq_dep1 p x p y)->x=y. +Proof. +Destruct 1; Intro. +Rewrite <- eq_rect_eq; Auto. +Qed. + +Lemma eq_dep_eq : (p:U)(x,y:(P p))(eq_dep p x p y)->x=y. +Proof. +Intros; Apply eq_dep1_eq; Apply eq_dep_dep1; Trivial. +Qed. + +End Dependent_Equality. + +(** Uniqueness of Identity Proofs (UIP) is a consequence of *) +(** Injectivity of Dependent Equality *) + +Lemma UIP : (U:Type)(x,y:U)(p1,p2:x=y)p1=p2. +Proof. +Intros; Apply eq_dep_eq with P:=[y]x=y. +Elim p2 using eq_indd. +Elim p1 using eq_indd. +Apply eq_dep_intro. +Qed. + +(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *) + +Lemma UIP_refl : (U:Type)(x:U)(p:x=x)p=(refl_equal U x). +Proof. +Intros; Apply UIP. +Qed. + +(** Streicher axiom K is a direct consequence of Uniqueness of + Reflexive Identity Proofs *) + +Lemma Streicher_K : (U:Type)(x:U)(P:x=x->Prop) + (P (refl_equal ? x))->(p:x=x)(P p). +Proof. +Intros; Rewrite UIP_refl; Assumption. +Qed. + +(** We finally recover eq_rec_eq (alternatively eq_rect_eq) from K *) + +Lemma eq_rec_eq : (U:Type)(P:U->Set)(p:U)(x:(P p))(h:p=p) + x=(eq_rec U p P x p h). +Proof. +Intros. +Apply Streicher_K with p:=h. +Reflexivity. +Qed. + +(** Dependent equality is equivalent to equality on dependent pairs *) + +Lemma equiv_eqex_eqdep : (U:Set)(P:U->Set)(p,q:U)(x:(P p))(y:(P q)) + (existS U P p x)=(existS U P q y) <-> (eq_dep U P p x q y). +Proof. +Split. +(* -> *) +Intro H. +Change p with (projS1 U P (existS U P p x)). +Change 2 x with (projS2 U P (existS U P p x)). +Rewrite H. +Apply eq_dep_intro. +(* <- *) +NewDestruct 1; Reflexivity. +Qed. + +(** UIP implies the injectivity of equality on dependent pairs *) + +Lemma inj_pair2: (U:Set)(P:U->Set)(p:U)(x,y:(P p)) + (existS U P p x)=(existS U P p y)-> x=y. +Proof. +Intros. +Apply (eq_dep_eq U P). +Generalize (equiv_eqex_eqdep U P p p x y) . +Induction 1. +Intros. +Auto. +Qed. + +(** UIP implies the injectivity of equality on dependent pairs *) + +Lemma inj_pairT2: (U:Type)(P:U->Type)(p:U)(x,y:(P p)) + (existT U P p x)=(existT U P p y)-> x=y. +Proof. +Intros. +Apply (eq_dep_eq U P). +Change 1 p with (projT1 U P (existT U P p x)). +Change 2 x with (projT2 U P (existT U P p x)). +Rewrite H. +Apply eq_dep_intro. +Qed. + +(** The main results to be exported *) + +Hints Resolve eq_dep_intro eq_dep_eq : core v62. +Hints Immediate eq_dep_sym : core v62. +Hints Resolve inj_pair2 inj_pairT2 : core. |