diff options
Diffstat (limited to 'theories7/Logic/Classical_Prop.v')
-rwxr-xr-x | theories7/Logic/Classical_Prop.v | 85 |
1 files changed, 0 insertions, 85 deletions
diff --git a/theories7/Logic/Classical_Prop.v b/theories7/Logic/Classical_Prop.v deleted file mode 100755 index 1dc7ec57..00000000 --- a/theories7/Logic/Classical_Prop.v +++ /dev/null @@ -1,85 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Classical_Prop.v,v 1.1.2.1 2004/07/16 19:31:29 herbelin Exp $ i*) - -(** Classical Propositional Logic *) - -Require ProofIrrelevance. - -Hints Unfold not : core. - -Axiom classic: (P:Prop)(P \/ ~(P)). - -Lemma NNPP : (p:Prop)~(~(p))->p. -Proof. -Unfold not; Intros; Elim (classic p); Auto. -Intro NP; Elim (H NP). -Qed. - -Lemma not_imply_elim : (P,Q:Prop)~(P->Q)->P. -Proof. -Intros; Apply NNPP; Red. -Intro; Apply H; Intro; Absurd P; Trivial. -Qed. - -Lemma not_imply_elim2 : (P,Q:Prop)~(P->Q) -> ~Q. -Proof. -Intros; Elim (classic Q); Auto. -Qed. - -Lemma imply_to_or : (P,Q:Prop)(P->Q) -> ~P \/ Q. -Proof. -Intros; Elim (classic P); Auto. -Qed. - -Lemma imply_to_and : (P,Q:Prop)~(P->Q) -> P /\ ~Q. -Proof. -Intros; Split. -Apply not_imply_elim with Q; Trivial. -Apply not_imply_elim2 with P; Trivial. -Qed. - -Lemma or_to_imply : (P,Q:Prop)(~P \/ Q) -> P->Q. -Proof. -Induction 1; Auto. -Intros H1 H2; Elim (H1 H2). -Qed. - -Lemma not_and_or : (P,Q:Prop)~(P/\Q)-> ~P \/ ~Q. -Proof. -Intros; Elim (classic P); Auto. -Qed. - -Lemma or_not_and : (P,Q:Prop)(~P \/ ~Q) -> ~(P/\Q). -Proof. -Induction 1; Red; Induction 2; Auto. -Qed. - -Lemma not_or_and : (P,Q:Prop)~(P\/Q)-> ~P /\ ~Q. -Proof. -Intros; Elim (classic P); Auto. -Qed. - -Lemma and_not_or : (P,Q:Prop)(~P /\ ~Q) -> ~(P\/Q). -Proof. -Induction 1; Red; Induction 3; Trivial. -Qed. - -Lemma imply_and_or: (P,Q:Prop)(P->Q) -> P \/ Q -> Q. -Proof. -Induction 2; Trivial. -Qed. - -Lemma imply_and_or2: (P,Q,R:Prop)(P->Q) -> P \/ R -> Q \/ R. -Proof. -Induction 2; Auto. -Qed. - -Lemma proof_irrelevance: (P:Prop)(p1,p2:P)p1==p2. -Proof (proof_irrelevance_cci classic). |