summaryrefslogtreecommitdiff
path: root/theories7/Logic/ClassicalDescription.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Logic/ClassicalDescription.v')
-rw-r--r--theories7/Logic/ClassicalDescription.v76
1 files changed, 76 insertions, 0 deletions
diff --git a/theories7/Logic/ClassicalDescription.v b/theories7/Logic/ClassicalDescription.v
new file mode 100644
index 00000000..85700c22
--- /dev/null
+++ b/theories7/Logic/ClassicalDescription.v
@@ -0,0 +1,76 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: ClassicalDescription.v,v 1.2.2.1 2004/07/16 19:31:29 herbelin Exp $ i*)
+
+(** This file provides classical logic and definite description *)
+
+(** Classical logic and definite description, as shown in [1],
+ implies the double-negation of excluded-middle in Set, hence it
+ implies a strongly classical world. Especially it conflicts with
+ impredicativity of Set, knowing that true<>false in Set.
+
+ [1] Laurent Chicli, Loïc Pottier, Carlos Simpson, Mathematical
+ Quotients and Quotient Types in Coq, Proceedings of TYPES 2002,
+ Lecture Notes in Computer Science 2646, Springer Verlag.
+*)
+
+Require Export Classical.
+
+Axiom dependent_description :
+ (A:Type;B:A->Type;R: (x:A)(B x)->Prop)
+ ((x:A)(EX y:(B x)|(R x y)/\ ((y':(B x))(R x y') -> y=y')))
+ -> (EX f:(x:A)(B x) | (x:A)(R x (f x))).
+
+(** Principle of definite descriptions (aka axiom of unique choice) *)
+
+Theorem description :
+ (A:Type;B:Type;R: A->B->Prop)
+ ((x:A)(EX y:B|(R x y)/\ ((y':B)(R x y') -> y=y')))
+ -> (EX f:A->B | (x:A)(R x (f x))).
+Proof.
+Intros A B.
+Apply (dependent_description A [_]B).
+Qed.
+
+(** The followig proof comes from [1] *)
+
+Theorem classic_set : (((P:Prop){P}+{~P}) -> False) -> False.
+Proof.
+Intro HnotEM.
+Pose R:=[A,b]A/\true=b \/ ~A/\false=b.
+Assert H:(EX f:Prop->bool|(A:Prop)(R A (f A))).
+Apply description.
+Intro A.
+NewDestruct (classic A) as [Ha|Hnota].
+ Exists true; Split.
+ Left; Split; [Assumption|Reflexivity].
+ Intros y [[_ Hy]|[Hna _]].
+ Assumption.
+ Contradiction.
+ Exists false; Split.
+ Right; Split; [Assumption|Reflexivity].
+ Intros y [[Ha _]|[_ Hy]].
+ Contradiction.
+ Assumption.
+NewDestruct H as [f Hf].
+Apply HnotEM.
+Intro P.
+Assert HfP := (Hf P).
+(* Elimination from Hf to Set is not allowed but from f to Set yes ! *)
+NewDestruct (f P).
+ Left.
+ NewDestruct HfP as [[Ha _]|[_ Hfalse]].
+ Assumption.
+ Discriminate.
+ Right.
+ NewDestruct HfP as [[_ Hfalse]|[Hna _]].
+ Discriminate.
+ Assumption.
+Qed.
+