summaryrefslogtreecommitdiff
path: root/theories7/Logic/ChoiceFacts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Logic/ChoiceFacts.v')
-rw-r--r--theories7/Logic/ChoiceFacts.v134
1 files changed, 0 insertions, 134 deletions
diff --git a/theories7/Logic/ChoiceFacts.v b/theories7/Logic/ChoiceFacts.v
deleted file mode 100644
index 5b7e002a..00000000
--- a/theories7/Logic/ChoiceFacts.v
+++ /dev/null
@@ -1,134 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: ChoiceFacts.v,v 1.1.2.1 2004/07/16 19:31:29 herbelin Exp $ i*)
-
-(* We show that the functional formulation of the axiom of Choice
- (usual formulation in type theory) is equivalent to its relational
- formulation (only formulation of set theory) + the axiom of
- (parametric) definite description (aka axiom of unique choice) *)
-
-(* This shows that the axiom of choice can be assumed (under its
- relational formulation) without known inconsistency with classical logic,
- though definite description conflicts with classical logic *)
-
-Definition RelationalChoice :=
- (A:Type;B:Type;R: A->B->Prop)
- ((x:A)(EX y:B|(R x y)))
- -> (EXT R':A->B->Prop |
- ((x:A)(EX y:B|(R x y)/\(R' x y)/\ ((y':B) (R' x y') -> y=y')))).
-
-Definition FunctionalChoice :=
- (A:Type;B:Type;R: A->B->Prop)
- ((x:A)(EX y:B|(R x y))) -> (EX f:A->B | (x:A)(R x (f x))).
-
-Definition ParamDefiniteDescription :=
- (A:Type;B:Type;R: A->B->Prop)
- ((x:A)(EX y:B|(R x y)/\ ((y':B)(R x y') -> y=y')))
- -> (EX f:A->B | (x:A)(R x (f x))).
-
-Lemma description_rel_choice_imp_funct_choice :
- ParamDefiniteDescription->RelationalChoice->FunctionalChoice.
-Intros Descr RelCh.
-Red; Intros A B R H.
-NewDestruct (RelCh A B R H) as [R' H0].
-NewDestruct (Descr A B R') as [f H1].
-Intro x.
-Elim (H0 x); Intros y [H2 [H3 H4]]; Exists y; Split; [Exact H3 | Exact H4].
-Exists f; Intro x.
-Elim (H0 x); Intros y [H2 [H3 H4]].
-Rewrite <- (H4 (f x) (H1 x)).
-Exact H2.
-Qed.
-
-Lemma funct_choice_imp_rel_choice :
- FunctionalChoice->RelationalChoice.
-Intros FunCh.
-Red; Intros A B R H.
-NewDestruct (FunCh A B R H) as [f H0].
-Exists [x,y]y=(f x).
-Intro x; Exists (f x);
-Split; [Apply H0| Split;[Reflexivity| Intros y H1; Symmetry; Exact H1]].
-Qed.
-
-Lemma funct_choice_imp_description :
- FunctionalChoice->ParamDefiniteDescription.
-Intros FunCh.
-Red; Intros A B R H.
-NewDestruct (FunCh A B R) as [f H0].
-(* 1 *)
-Intro x.
-Elim (H x); Intros y [H0 H1].
-Exists y; Exact H0.
-(* 2 *)
-Exists f; Exact H0.
-Qed.
-
-Theorem FunChoice_Equiv_RelChoice_and_ParamDefinDescr :
- FunctionalChoice <-> RelationalChoice /\ ParamDefiniteDescription.
-Split.
-Intro H; Split; [
- Exact (funct_choice_imp_rel_choice H)
- | Exact (funct_choice_imp_description H)].
-Intros [H H0]; Exact (description_rel_choice_imp_funct_choice H0 H).
-Qed.
-
-(* We show that the guarded relational formulation of the axiom of Choice
- comes from the non guarded formulation in presence either of the
- independance of premises or proof-irrelevance *)
-
-Definition GuardedRelationalChoice :=
- (A:Type;B:Type;P:A->Prop;R: A->B->Prop)
- ((x:A)(P x)->(EX y:B|(R x y)))
- -> (EXT R':A->B->Prop |
- ((x:A)(P x)->(EX y:B|(R x y)/\(R' x y)/\ ((y':B) (R' x y') -> y=y')))).
-
-Definition ProofIrrelevance := (A:Prop)(a1,a2:A) a1==a2.
-
-Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice :
- RelationalChoice -> ProofIrrelevance -> GuardedRelationalChoice.
-Proof.
-Intros rel_choice proof_irrel.
-Red; Intros A B P R H.
-NewDestruct (rel_choice ? ? [x:(sigT ? P);y:B](R (projT1 ? ? x) y)) as [R' H0].
-Intros [x HPx].
-NewDestruct (H x HPx) as [y HRxy].
-Exists y; Exact HRxy.
-Pose R'':=[x:A;y:B](EXT H:(P x) | (R' (existT ? P x H) y)).
-Exists R''; Intros x HPx.
-NewDestruct (H0 (existT ? P x HPx)) as [y [HRxy [HR'xy Huniq]]].
-Exists y. Split.
- Exact HRxy.
- Split.
- Red; Exists HPx; Exact HR'xy.
- Intros y' HR''xy'.
- Apply Huniq.
- Unfold R'' in HR''xy'.
- NewDestruct HR''xy' as [H'Px HR'xy'].
- Rewrite proof_irrel with a1:=HPx a2:=H'Px.
- Exact HR'xy'.
-Qed.
-
-Definition IndependenceOfPremises :=
- (A:Type)(P:A->Prop)(Q:Prop)(Q->(EXT x|(P x)))->(EXT x|Q->(P x)).
-
-Lemma rel_choice_indep_of_premises_imp_guarded_rel_choice :
- RelationalChoice -> IndependenceOfPremises -> GuardedRelationalChoice.
-Proof.
-Intros RelCh IndPrem.
-Red; Intros A B P R H.
-NewDestruct (RelCh A B [x,y](P x)->(R x y)) as [R' H0].
- Intro x. Apply IndPrem.
- Apply H.
- Exists R'.
- Intros x HPx.
- NewDestruct (H0 x) as [y [H1 H2]].
- Exists y. Split.
- Apply (H1 HPx).
- Exact H2.
-Qed.