summaryrefslogtreecommitdiff
path: root/theories7/Lists/List.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Lists/List.v')
-rwxr-xr-xtheories7/Lists/List.v261
1 files changed, 261 insertions, 0 deletions
diff --git a/theories7/Lists/List.v b/theories7/Lists/List.v
new file mode 100755
index 00000000..574b2688
--- /dev/null
+++ b/theories7/Lists/List.v
@@ -0,0 +1,261 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: List.v,v 1.1.2.1 2004/07/16 19:31:28 herbelin Exp $ i*)
+
+(* This file is a copy of file MonoList.v *)
+
+(** THIS IS A OLD CONTRIB. IT IS NO LONGER MAINTAINED ***)
+
+Require Le.
+
+Parameter List_Dom:Set.
+Definition A := List_Dom.
+
+Inductive list : Set := nil : list | cons : A -> list -> list.
+
+Fixpoint app [l:list] : list -> list
+ := [m:list]<list>Cases l of
+ nil => m
+ | (cons a l1) => (cons a (app l1 m))
+ end.
+
+
+Lemma app_nil_end : (l:list)(l=(app l nil)).
+Proof.
+ Intro l ; Elim l ; Simpl ; Auto.
+ Induction 1; Auto.
+Qed.
+Hints Resolve app_nil_end : list v62.
+
+Lemma app_ass : (l,m,n : list)(app (app l m) n)=(app l (app m n)).
+Proof.
+ Intros l m n ; Elim l ; Simpl ; Auto with list.
+ Induction 1; Auto with list.
+Qed.
+Hints Resolve app_ass : list v62.
+
+Lemma ass_app : (l,m,n : list)(app l (app m n))=(app (app l m) n).
+Proof.
+ Auto with list.
+Qed.
+Hints Resolve ass_app : list v62.
+
+Definition tail :=
+ [l:list] <list>Cases l of (cons _ m) => m | _ => nil end : list->list.
+
+
+Lemma nil_cons : (a:A)(m:list)~nil=(cons a m).
+ Intros; Discriminate.
+Qed.
+
+(****************************************)
+(* Length of lists *)
+(****************************************)
+
+Fixpoint length [l:list] : nat
+ := <nat>Cases l of (cons _ m) => (S (length m)) | _ => O end.
+
+(******************************)
+(* Length order of lists *)
+(******************************)
+
+Section length_order.
+Definition lel := [l,m:list](le (length l) (length m)).
+
+Hints Unfold lel : list.
+
+Variables a,b:A.
+Variables l,m,n:list.
+
+Lemma lel_refl : (lel l l).
+Proof.
+ Unfold lel ; Auto with list.
+Qed.
+
+Lemma lel_trans : (lel l m)->(lel m n)->(lel l n).
+Proof.
+ Unfold lel ; Intros.
+ Apply le_trans with (length m) ; Auto with list.
+Qed.
+
+Lemma lel_cons_cons : (lel l m)->(lel (cons a l) (cons b m)).
+Proof.
+ Unfold lel ; Simpl ; Auto with list arith.
+Qed.
+
+Lemma lel_cons : (lel l m)->(lel l (cons b m)).
+Proof.
+ Unfold lel ; Simpl ; Auto with list arith.
+Qed.
+
+Lemma lel_tail : (lel (cons a l) (cons b m)) -> (lel l m).
+Proof.
+ Unfold lel ; Simpl ; Auto with list arith.
+Qed.
+
+Lemma lel_nil : (l':list)(lel l' nil)->(nil=l').
+Proof.
+ Intro l' ; Elim l' ; Auto with list arith.
+ Intros a' y H H0.
+ (* <list>nil=(cons a' y)
+ ============================
+ H0 : (lel (cons a' y) nil)
+ H : (lel y nil)->(<list>nil=y)
+ y : list
+ a' : A
+ l' : list *)
+ Absurd (le (S (length y)) O); Auto with list arith.
+Qed.
+End length_order.
+
+Hints Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons : list v62.
+
+Fixpoint In [a:A;l:list] : Prop :=
+ Cases l of
+ nil => False
+ | (cons b m) => (b=a)\/(In a m)
+ end.
+
+Lemma in_eq : (a:A)(l:list)(In a (cons a l)).
+Proof.
+ Simpl ; Auto with list.
+Qed.
+Hints Resolve in_eq : list v62.
+
+Lemma in_cons : (a,b:A)(l:list)(In b l)->(In b (cons a l)).
+Proof.
+ Simpl ; Auto with list.
+Qed.
+Hints Resolve in_cons : list v62.
+
+Lemma in_app_or : (l,m:list)(a:A)(In a (app l m))->((In a l)\/(In a m)).
+Proof.
+ Intros l m a.
+ Elim l ; Simpl ; Auto with list.
+ Intros a0 y H H0.
+ (* ((<A>a0=a)\/(In a y))\/(In a m)
+ ============================
+ H0 : (<A>a0=a)\/(In a (app y m))
+ H : (In a (app y m))->((In a y)\/(In a m))
+ y : list
+ a0 : A
+ a : A
+ m : list
+ l : list *)
+ Elim H0 ; Auto with list.
+ Intro H1.
+ (* ((<A>a0=a)\/(In a y))\/(In a m)
+ ============================
+ H1 : (In a (app y m)) *)
+ Elim (H H1) ; Auto with list.
+Qed.
+Hints Immediate in_app_or : list v62.
+
+Lemma in_or_app : (l,m:list)(a:A)((In a l)\/(In a m))->(In a (app l m)).
+Proof.
+ Intros l m a.
+ Elim l ; Simpl ; Intro H.
+ (* 1 (In a m)
+ ============================
+ H : False\/(In a m)
+ a : A
+ m : list
+ l : list *)
+ Elim H ; Auto with list ; Intro H0.
+ (* (In a m)
+ ============================
+ H0 : False *)
+ Elim H0. (* subProof completed *)
+ Intros y H0 H1.
+ (* 2 (<A>H=a)\/(In a (app y m))
+ ============================
+ H1 : ((<A>H=a)\/(In a y))\/(In a m)
+ H0 : ((In a y)\/(In a m))->(In a (app y m))
+ y : list *)
+ Elim H1 ; Auto 4 with list.
+ Intro H2.
+ (* (<A>H=a)\/(In a (app y m))
+ ============================
+ H2 : (<A>H=a)\/(In a y) *)
+ Elim H2 ; Auto with list.
+Qed.
+Hints Resolve in_or_app : list v62.
+
+Definition incl := [l,m:list](a:A)(In a l)->(In a m).
+
+Hints Unfold incl : list v62.
+
+Lemma incl_refl : (l:list)(incl l l).
+Proof.
+ Auto with list.
+Qed.
+Hints Resolve incl_refl : list v62.
+
+Lemma incl_tl : (a:A)(l,m:list)(incl l m)->(incl l (cons a m)).
+Proof.
+ Auto with list.
+Qed.
+Hints Immediate incl_tl : list v62.
+
+Lemma incl_tran : (l,m,n:list)(incl l m)->(incl m n)->(incl l n).
+Proof.
+ Auto with list.
+Qed.
+
+Lemma incl_appl : (l,m,n:list)(incl l n)->(incl l (app n m)).
+Proof.
+ Auto with list.
+Qed.
+Hints Immediate incl_appl : list v62.
+
+Lemma incl_appr : (l,m,n:list)(incl l n)->(incl l (app m n)).
+Proof.
+ Auto with list.
+Qed.
+Hints Immediate incl_appr : list v62.
+
+Lemma incl_cons : (a:A)(l,m:list)(In a m)->(incl l m)->(incl (cons a l) m).
+Proof.
+ Unfold incl ; Simpl ; Intros a l m H H0 a0 H1.
+ (* (In a0 m)
+ ============================
+ H1 : (<A>a=a0)\/(In a0 l)
+ a0 : A
+ H0 : (a:A)(In a l)->(In a m)
+ H : (In a m)
+ m : list
+ l : list
+ a : A *)
+ Elim H1.
+ (* 1 (<A>a=a0)->(In a0 m) *)
+ Elim H1 ; Auto with list ; Intro H2.
+ (* (<A>a=a0)->(In a0 m)
+ ============================
+ H2 : <A>a=a0 *)
+ Elim H2 ; Auto with list. (* solves subgoal *)
+ (* 2 (In a0 l)->(In a0 m) *)
+ Auto with list.
+Qed.
+Hints Resolve incl_cons : list v62.
+
+Lemma incl_app : (l,m,n:list)(incl l n)->(incl m n)->(incl (app l m) n).
+Proof.
+ Unfold incl ; Simpl ; Intros l m n H H0 a H1.
+ (* (In a n)
+ ============================
+ H1 : (In a (app l m))
+ a : A
+ H0 : (a:A)(In a m)->(In a n)
+ H : (a:A)(In a l)->(In a n)
+ n : list
+ m : list
+ l : list *)
+ Elim (in_app_or l m a) ; Auto with list.
+Qed.
+Hints Resolve incl_app : list v62.