diff options
Diffstat (limited to 'theories7/Lists/List.v')
-rwxr-xr-x | theories7/Lists/List.v | 261 |
1 files changed, 261 insertions, 0 deletions
diff --git a/theories7/Lists/List.v b/theories7/Lists/List.v new file mode 100755 index 00000000..574b2688 --- /dev/null +++ b/theories7/Lists/List.v @@ -0,0 +1,261 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: List.v,v 1.1.2.1 2004/07/16 19:31:28 herbelin Exp $ i*) + +(* This file is a copy of file MonoList.v *) + +(** THIS IS A OLD CONTRIB. IT IS NO LONGER MAINTAINED ***) + +Require Le. + +Parameter List_Dom:Set. +Definition A := List_Dom. + +Inductive list : Set := nil : list | cons : A -> list -> list. + +Fixpoint app [l:list] : list -> list + := [m:list]<list>Cases l of + nil => m + | (cons a l1) => (cons a (app l1 m)) + end. + + +Lemma app_nil_end : (l:list)(l=(app l nil)). +Proof. + Intro l ; Elim l ; Simpl ; Auto. + Induction 1; Auto. +Qed. +Hints Resolve app_nil_end : list v62. + +Lemma app_ass : (l,m,n : list)(app (app l m) n)=(app l (app m n)). +Proof. + Intros l m n ; Elim l ; Simpl ; Auto with list. + Induction 1; Auto with list. +Qed. +Hints Resolve app_ass : list v62. + +Lemma ass_app : (l,m,n : list)(app l (app m n))=(app (app l m) n). +Proof. + Auto with list. +Qed. +Hints Resolve ass_app : list v62. + +Definition tail := + [l:list] <list>Cases l of (cons _ m) => m | _ => nil end : list->list. + + +Lemma nil_cons : (a:A)(m:list)~nil=(cons a m). + Intros; Discriminate. +Qed. + +(****************************************) +(* Length of lists *) +(****************************************) + +Fixpoint length [l:list] : nat + := <nat>Cases l of (cons _ m) => (S (length m)) | _ => O end. + +(******************************) +(* Length order of lists *) +(******************************) + +Section length_order. +Definition lel := [l,m:list](le (length l) (length m)). + +Hints Unfold lel : list. + +Variables a,b:A. +Variables l,m,n:list. + +Lemma lel_refl : (lel l l). +Proof. + Unfold lel ; Auto with list. +Qed. + +Lemma lel_trans : (lel l m)->(lel m n)->(lel l n). +Proof. + Unfold lel ; Intros. + Apply le_trans with (length m) ; Auto with list. +Qed. + +Lemma lel_cons_cons : (lel l m)->(lel (cons a l) (cons b m)). +Proof. + Unfold lel ; Simpl ; Auto with list arith. +Qed. + +Lemma lel_cons : (lel l m)->(lel l (cons b m)). +Proof. + Unfold lel ; Simpl ; Auto with list arith. +Qed. + +Lemma lel_tail : (lel (cons a l) (cons b m)) -> (lel l m). +Proof. + Unfold lel ; Simpl ; Auto with list arith. +Qed. + +Lemma lel_nil : (l':list)(lel l' nil)->(nil=l'). +Proof. + Intro l' ; Elim l' ; Auto with list arith. + Intros a' y H H0. + (* <list>nil=(cons a' y) + ============================ + H0 : (lel (cons a' y) nil) + H : (lel y nil)->(<list>nil=y) + y : list + a' : A + l' : list *) + Absurd (le (S (length y)) O); Auto with list arith. +Qed. +End length_order. + +Hints Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons : list v62. + +Fixpoint In [a:A;l:list] : Prop := + Cases l of + nil => False + | (cons b m) => (b=a)\/(In a m) + end. + +Lemma in_eq : (a:A)(l:list)(In a (cons a l)). +Proof. + Simpl ; Auto with list. +Qed. +Hints Resolve in_eq : list v62. + +Lemma in_cons : (a,b:A)(l:list)(In b l)->(In b (cons a l)). +Proof. + Simpl ; Auto with list. +Qed. +Hints Resolve in_cons : list v62. + +Lemma in_app_or : (l,m:list)(a:A)(In a (app l m))->((In a l)\/(In a m)). +Proof. + Intros l m a. + Elim l ; Simpl ; Auto with list. + Intros a0 y H H0. + (* ((<A>a0=a)\/(In a y))\/(In a m) + ============================ + H0 : (<A>a0=a)\/(In a (app y m)) + H : (In a (app y m))->((In a y)\/(In a m)) + y : list + a0 : A + a : A + m : list + l : list *) + Elim H0 ; Auto with list. + Intro H1. + (* ((<A>a0=a)\/(In a y))\/(In a m) + ============================ + H1 : (In a (app y m)) *) + Elim (H H1) ; Auto with list. +Qed. +Hints Immediate in_app_or : list v62. + +Lemma in_or_app : (l,m:list)(a:A)((In a l)\/(In a m))->(In a (app l m)). +Proof. + Intros l m a. + Elim l ; Simpl ; Intro H. + (* 1 (In a m) + ============================ + H : False\/(In a m) + a : A + m : list + l : list *) + Elim H ; Auto with list ; Intro H0. + (* (In a m) + ============================ + H0 : False *) + Elim H0. (* subProof completed *) + Intros y H0 H1. + (* 2 (<A>H=a)\/(In a (app y m)) + ============================ + H1 : ((<A>H=a)\/(In a y))\/(In a m) + H0 : ((In a y)\/(In a m))->(In a (app y m)) + y : list *) + Elim H1 ; Auto 4 with list. + Intro H2. + (* (<A>H=a)\/(In a (app y m)) + ============================ + H2 : (<A>H=a)\/(In a y) *) + Elim H2 ; Auto with list. +Qed. +Hints Resolve in_or_app : list v62. + +Definition incl := [l,m:list](a:A)(In a l)->(In a m). + +Hints Unfold incl : list v62. + +Lemma incl_refl : (l:list)(incl l l). +Proof. + Auto with list. +Qed. +Hints Resolve incl_refl : list v62. + +Lemma incl_tl : (a:A)(l,m:list)(incl l m)->(incl l (cons a m)). +Proof. + Auto with list. +Qed. +Hints Immediate incl_tl : list v62. + +Lemma incl_tran : (l,m,n:list)(incl l m)->(incl m n)->(incl l n). +Proof. + Auto with list. +Qed. + +Lemma incl_appl : (l,m,n:list)(incl l n)->(incl l (app n m)). +Proof. + Auto with list. +Qed. +Hints Immediate incl_appl : list v62. + +Lemma incl_appr : (l,m,n:list)(incl l n)->(incl l (app m n)). +Proof. + Auto with list. +Qed. +Hints Immediate incl_appr : list v62. + +Lemma incl_cons : (a:A)(l,m:list)(In a m)->(incl l m)->(incl (cons a l) m). +Proof. + Unfold incl ; Simpl ; Intros a l m H H0 a0 H1. + (* (In a0 m) + ============================ + H1 : (<A>a=a0)\/(In a0 l) + a0 : A + H0 : (a:A)(In a l)->(In a m) + H : (In a m) + m : list + l : list + a : A *) + Elim H1. + (* 1 (<A>a=a0)->(In a0 m) *) + Elim H1 ; Auto with list ; Intro H2. + (* (<A>a=a0)->(In a0 m) + ============================ + H2 : <A>a=a0 *) + Elim H2 ; Auto with list. (* solves subgoal *) + (* 2 (In a0 l)->(In a0 m) *) + Auto with list. +Qed. +Hints Resolve incl_cons : list v62. + +Lemma incl_app : (l,m,n:list)(incl l n)->(incl m n)->(incl (app l m) n). +Proof. + Unfold incl ; Simpl ; Intros l m n H H0 a H1. + (* (In a n) + ============================ + H1 : (In a (app l m)) + a : A + H0 : (a:A)(In a m)->(In a n) + H : (a:A)(In a l)->(In a n) + n : list + m : list + l : list *) + Elim (in_app_or l m a) ; Auto with list. +Qed. +Hints Resolve incl_app : list v62. |