diff options
Diffstat (limited to 'theories7/IntMap/Mapfold.v')
-rw-r--r-- | theories7/IntMap/Mapfold.v | 381 |
1 files changed, 381 insertions, 0 deletions
diff --git a/theories7/IntMap/Mapfold.v b/theories7/IntMap/Mapfold.v new file mode 100644 index 00000000..8061f253 --- /dev/null +++ b/theories7/IntMap/Mapfold.v @@ -0,0 +1,381 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Mapfold.v,v 1.1.2.1 2004/07/16 19:31:28 herbelin Exp $ i*) + +Require Bool. +Require Sumbool. +Require ZArith. +Require Addr. +Require Adist. +Require Addec. +Require Map. +Require Fset. +Require Mapaxioms. +Require Mapiter. +Require Lsort. +Require Mapsubset. +Require PolyList. + +Section MapFoldResults. + + Variable A : Set. + + Variable M : Set. + Variable neutral : M. + Variable op : M -> M -> M. + + Variable nleft : (a:M) (op neutral a)=a. + Variable nright : (a:M) (op a neutral)=a. + Variable assoc : (a,b,c:M) (op (op a b) c)=(op a (op b c)). + + Lemma MapFold_ext : (f:ad->A->M) (m,m':(Map A)) (eqmap A m m') -> + (MapFold ? ? neutral op f m)=(MapFold ? ? neutral op f m'). + Proof. + Intros. Rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m). + Rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m'). + Cut (alist_of_Map A m)=(alist_of_Map A m'). Intro. Rewrite H0. Reflexivity. + Apply alist_canonical. Unfold eqmap in H. Apply eqm_trans with f':=(MapGet A m). + Apply eqm_sym. Apply alist_of_Map_semantics. + Apply eqm_trans with f':=(MapGet A m'). Assumption. + Apply alist_of_Map_semantics. + Apply alist_of_Map_sorts2. + Apply alist_of_Map_sorts2. + Qed. + + Lemma MapFold_ext_f_1 : (m:(Map A)) (f,g:ad->A->M) (pf:ad->ad) + ((a:ad) (y:A) (MapGet ? m a)=(SOME ? y) -> (f (pf a) y)=(g (pf a) y)) -> + (MapFold1 ? ? neutral op f pf m)=(MapFold1 ? ? neutral op g pf m). + Proof. + Induction m. Trivial. + Simpl. Intros. Apply H. Rewrite (ad_eq_correct a). Reflexivity. + Intros. Simpl. Rewrite (H f g [a0:ad](pf (ad_double a0))). + Rewrite (H0 f g [a0:ad](pf (ad_double_plus_un a0))). Reflexivity. + Intros. Apply H1. Rewrite MapGet_M2_bit_0_1. Rewrite ad_double_plus_un_div_2. Assumption. + Apply ad_double_plus_un_bit_0. + Intros. Apply H1. Rewrite MapGet_M2_bit_0_0. Rewrite ad_double_div_2. Assumption. + Apply ad_double_bit_0. + Qed. + + Lemma MapFold_ext_f : (f,g:ad->A->M) (m:(Map A)) + ((a:ad) (y:A) (MapGet ? m a)=(SOME ? y) -> (f a y)=(g a y)) -> + (MapFold ? ? neutral op f m)=(MapFold ? ? neutral op g m). + Proof. + Intros. Exact (MapFold_ext_f_1 m f g [a0:ad]a0 H). + Qed. + + Lemma MapFold1_as_Fold_1 : (m:(Map A)) (f,f':ad->A->M) (pf, pf':ad->ad) + ((a:ad) (y:A) (f (pf a) y)=(f' (pf' a) y)) -> + (MapFold1 ? ? neutral op f pf m)=(MapFold1 ? ? neutral op f' pf' m). + Proof. + Induction m. Trivial. + Intros. Simpl. Apply H. + Intros. Simpl. + Rewrite (H f f' [a0:ad](pf (ad_double a0)) [a0:ad](pf' (ad_double a0))). + Rewrite (H0 f f' [a0:ad](pf (ad_double_plus_un a0)) [a0:ad](pf' (ad_double_plus_un a0))). + Reflexivity. + Intros. Apply H1. + Intros. Apply H1. + Qed. + + Lemma MapFold1_as_Fold : (f:ad->A->M) (pf:ad->ad) (m:(Map A)) + (MapFold1 ? ? neutral op f pf m)=(MapFold ? ? neutral op [a:ad][y:A] (f (pf a) y) m). + Proof. + Intros. Unfold MapFold. Apply MapFold1_as_Fold_1. Trivial. + Qed. + + Lemma MapFold1_ext : (f:ad->A->M) (m,m':(Map A)) (eqmap A m m') -> (pf:ad->ad) + (MapFold1 ? ? neutral op f pf m)=(MapFold1 ? ? neutral op f pf m'). + Proof. + Intros. Rewrite MapFold1_as_Fold. Rewrite MapFold1_as_Fold. Apply MapFold_ext. Assumption. + Qed. + + Variable comm : (a,b:M) (op a b)=(op b a). + + Lemma MapFold_Put_disjoint_1 : (p:positive) + (f:ad->A->M) (pf:ad->ad) (a1,a2:ad) (y1,y2:A) + (ad_xor a1 a2)=(ad_x p) -> + (MapFold1 A M neutral op f pf (MapPut1 A a1 y1 a2 y2 p))= + (op (f (pf a1) y1) (f (pf a2) y2)). + Proof. + Induction p. Intros. Simpl. Elim (sumbool_of_bool (ad_bit_0 a1)). Intro H1. Rewrite H1. + Simpl. Rewrite ad_div_2_double_plus_un. Rewrite ad_div_2_double. Apply comm. + Change (ad_bit_0 a2)=(negb true). Rewrite <- H1. Rewrite (ad_neg_bit_0_2 ? ? ? H0). + Rewrite negb_elim. Reflexivity. + Assumption. + Intro H1. Rewrite H1. Simpl. Rewrite ad_div_2_double. Rewrite ad_div_2_double_plus_un. + Reflexivity. + Change (ad_bit_0 a2)=(negb false). Rewrite <- H1. Rewrite (ad_neg_bit_0_2 ? ? ? H0). + Rewrite negb_elim. Reflexivity. + Assumption. + Simpl. Intros. Elim (sumbool_of_bool (ad_bit_0 a1)). Intro H1. Rewrite H1. Simpl. + Rewrite nleft. + Rewrite (H f [a0:ad](pf (ad_double_plus_un a0)) (ad_div_2 a1) (ad_div_2 a2) y1 y2). + Rewrite ad_div_2_double_plus_un. Rewrite ad_div_2_double_plus_un. Reflexivity. + Rewrite <- (ad_same_bit_0 ? ? ? H0). Assumption. + Assumption. + Rewrite <- ad_xor_div_2. Rewrite H0. Reflexivity. + Intro H1. Rewrite H1. Simpl. Rewrite nright. + Rewrite (H f [a0:ad](pf (ad_double a0)) (ad_div_2 a1) (ad_div_2 a2) y1 y2). + Rewrite ad_div_2_double. Rewrite ad_div_2_double. Reflexivity. + Rewrite <- (ad_same_bit_0 ? ? ? H0). Assumption. + Assumption. + Rewrite <- ad_xor_div_2. Rewrite H0. Reflexivity. + Intros. Simpl. Elim (sumbool_of_bool (ad_bit_0 a1)). Intro H0. Rewrite H0. Simpl. + Rewrite ad_div_2_double. Rewrite ad_div_2_double_plus_un. Apply comm. + Assumption. + Change (ad_bit_0 a2)=(negb true). Rewrite <- H0. Rewrite (ad_neg_bit_0_1 ? ? H). + Rewrite negb_elim. Reflexivity. + Intro H0. Rewrite H0. Simpl. Rewrite ad_div_2_double. Rewrite ad_div_2_double_plus_un. + Reflexivity. + Change (ad_bit_0 a2)=(negb false). Rewrite <- H0. Rewrite (ad_neg_bit_0_1 ? ? H). + Rewrite negb_elim. Reflexivity. + Assumption. + Qed. + + Lemma MapFold_Put_disjoint_2 : + (f:ad->A->M) (m:(Map A)) (a:ad) (y:A) (pf:ad->ad) + (MapGet A m a)=(NONE A) -> + (MapFold1 A M neutral op f pf (MapPut A m a y))= + (op (f (pf a) y) (MapFold1 A M neutral op f pf m)). + Proof. + Induction m. Intros. Simpl. Rewrite (nright (f (pf a) y)). Reflexivity. + Intros a1 y1 a2 y2 pf H. Simpl. Elim (ad_sum (ad_xor a1 a2)). Intro H0. Elim H0. + Intros p H1. Rewrite H1. Rewrite comm. Exact (MapFold_Put_disjoint_1 p f pf a1 a2 y1 y2 H1). + Intro H0. Rewrite (ad_eq_complete ? ? (ad_xor_eq_true ? ? H0)) in H. + Rewrite (M1_semantics_1 A a2 y1) in H. Discriminate H. + Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. + Cut (MapPut A (M2 A m0 m1) a y)=(M2 A m0 (MapPut A m1 (ad_div_2 a) y)). Intro. + Rewrite H3. Simpl. Rewrite (H0 (ad_div_2 a) y [a0:ad](pf (ad_double_plus_un a0))). + Rewrite ad_div_2_double_plus_un. Rewrite <- assoc. + Rewrite (comm (MapFold1 A M neutral op f [a0:ad](pf (ad_double a0)) m0) (f (pf a) y)). + Rewrite assoc. Reflexivity. + Assumption. + Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. Assumption. + Simpl. Elim (ad_sum a). Intro H3. Elim H3. Intro p. Elim p. Intros p0 H4 H5. Rewrite H5. + Reflexivity. + Intros p0 H4 H5. Rewrite H5 in H2. Discriminate H2. + Intro H4. Rewrite H4. Reflexivity. + Intro H3. Rewrite H3 in H2. Discriminate H2. + Intro H2. Cut (MapPut A (M2 A m0 m1) a y)=(M2 A (MapPut A m0 (ad_div_2 a) y) m1). + Intro. Rewrite H3. Simpl. Rewrite (H (ad_div_2 a) y [a0:ad](pf (ad_double a0))). + Rewrite ad_div_2_double. Rewrite <- assoc. Reflexivity. + Assumption. + Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. Assumption. + Simpl. Elim (ad_sum a). Intro H3. Elim H3. Intro p. Elim p. Intros p0 H4 H5. Rewrite H5 in H2. + Discriminate H2. + Intros p0 H4 H5. Rewrite H5. Reflexivity. + Intro H4. Rewrite H4 in H2. Discriminate H2. + Intro H3. Rewrite H3. Reflexivity. + Qed. + + Lemma MapFold_Put_disjoint : + (f:ad->A->M) (m:(Map A)) (a:ad) (y:A) + (MapGet A m a)=(NONE A) -> + (MapFold A M neutral op f (MapPut A m a y))= + (op (f a y) (MapFold A M neutral op f m)). + Proof. + Intros. Exact (MapFold_Put_disjoint_2 f m a y [a0:ad]a0 H). + Qed. + + Lemma MapFold_Put_behind_disjoint_2 : + (f:ad->A->M) (m:(Map A)) (a:ad) (y:A) (pf:ad->ad) + (MapGet A m a)=(NONE A) -> + (MapFold1 A M neutral op f pf (MapPut_behind A m a y))= + (op (f (pf a) y) (MapFold1 A M neutral op f pf m)). + Proof. + Intros. Cut (eqmap A (MapPut_behind A m a y) (MapPut A m a y)). Intro. + Rewrite (MapFold1_ext f ? ? H0 pf). Apply MapFold_Put_disjoint_2. Assumption. + Apply eqmap_trans with m':=(MapMerge A (M1 A a y) m). Apply MapPut_behind_as_Merge. + Apply eqmap_trans with m':=(MapMerge A m (M1 A a y)). + Apply eqmap_trans with m':=(MapDelta A (M1 A a y) m). Apply eqmap_sym. Apply MapDelta_disjoint. + Unfold MapDisjoint. Unfold in_dom. Simpl. Intros. Elim (sumbool_of_bool (ad_eq a a0)). + Intro H2. Rewrite (ad_eq_complete ? ? H2) in H. Rewrite H in H1. Discriminate H1. + Intro H2. Rewrite H2 in H0. Discriminate H0. + Apply eqmap_trans with m':=(MapDelta A m (M1 A a y)). Apply MapDelta_sym. + Apply MapDelta_disjoint. Unfold MapDisjoint. Unfold in_dom. Simpl. Intros. + Elim (sumbool_of_bool (ad_eq a a0)). Intro H2. Rewrite (ad_eq_complete ? ? H2) in H. + Rewrite H in H0. Discriminate H0. + Intro H2. Rewrite H2 in H1. Discriminate H1. + Apply eqmap_sym. Apply MapPut_as_Merge. + Qed. + + Lemma MapFold_Put_behind_disjoint : + (f:ad->A->M) (m:(Map A)) (a:ad) (y:A) + (MapGet A m a)=(NONE A) -> + (MapFold A M neutral op f (MapPut_behind A m a y)) + =(op (f a y) (MapFold A M neutral op f m)). + Proof. + Intros. Exact (MapFold_Put_behind_disjoint_2 f m a y [a0:ad]a0 H). + Qed. + + Lemma MapFold_Merge_disjoint_1 : + (f:ad->A->M) (m1,m2:(Map A)) (pf:ad->ad) + (MapDisjoint A A m1 m2) -> + (MapFold1 A M neutral op f pf (MapMerge A m1 m2))= + (op (MapFold1 A M neutral op f pf m1) (MapFold1 A M neutral op f pf m2)). + Proof. + Induction m1. Simpl. Intros. Rewrite nleft. Reflexivity. + Intros. Unfold MapMerge. Apply (MapFold_Put_behind_disjoint_2 f m2 a a0 pf). + Apply in_dom_none. Exact (MapDisjoint_M1_l ? ? m2 a a0 H). + Induction m2. Intros. Simpl. Rewrite nright. Reflexivity. + Intros. Unfold MapMerge. Rewrite (MapFold_Put_disjoint_2 f (M2 A m m0) a a0 pf). Apply comm. + Apply in_dom_none. Exact (MapDisjoint_M1_r ? ? (M2 A m m0) a a0 H1). + Intros. Simpl. Rewrite (H m3 [a0:ad](pf (ad_double a0))). + Rewrite (H0 m4 [a0:ad](pf (ad_double_plus_un a0))). + Cut (a,b,c,d:M)(op (op a b) (op c d))=(op (op a c) (op b d)). Intro. Apply H4. + Intros. Rewrite assoc. Rewrite <- (assoc b c d). Rewrite (comm b c). Rewrite (assoc c b d). + Rewrite assoc. Reflexivity. + Exact (MapDisjoint_M2_r ? ? ? ? ? ? H3). + Exact (MapDisjoint_M2_l ? ? ? ? ? ? H3). + Qed. + + Lemma MapFold_Merge_disjoint : + (f:ad->A->M) (m1,m2:(Map A)) + (MapDisjoint A A m1 m2) -> + (MapFold A M neutral op f (MapMerge A m1 m2))= + (op (MapFold A M neutral op f m1) (MapFold A M neutral op f m2)). + Proof. + Intros. Exact (MapFold_Merge_disjoint_1 f m1 m2 [a0:ad]a0 H). + Qed. + +End MapFoldResults. + +Section MapFoldDistr. + + Variable A : Set. + + Variable M : Set. + Variable neutral : M. + Variable op : M -> M -> M. + + Variable M' : Set. + Variable neutral' : M'. + Variable op' : M' -> M' -> M'. + + Variable N : Set. + + Variable times : M -> N -> M'. + + Variable absorb : (c:N)(times neutral c)=neutral'. + Variable distr : (a,b:M) (c:N) (times (op a b) c) = (op' (times a c) (times b c)). + + Lemma MapFold_distr_r_1 : (f:ad->A->M) (m:(Map A)) (c:N) (pf:ad->ad) + (times (MapFold1 A M neutral op f pf m) c)= + (MapFold1 A M' neutral' op' [a:ad][y:A] (times (f a y) c) pf m). + Proof. + Induction m. Intros. Exact (absorb c). + Trivial. + Intros. Simpl. Rewrite distr. Rewrite H. Rewrite H0. Reflexivity. + Qed. + + Lemma MapFold_distr_r : (f:ad->A->M) (m:(Map A)) (c:N) + (times (MapFold A M neutral op f m) c)= + (MapFold A M' neutral' op' [a:ad][y:A] (times (f a y) c) m). + Proof. + Intros. Exact (MapFold_distr_r_1 f m c [a:ad]a). + Qed. + +End MapFoldDistr. + +Section MapFoldDistrL. + + Variable A : Set. + + Variable M : Set. + Variable neutral : M. + Variable op : M -> M -> M. + + Variable M' : Set. + Variable neutral' : M'. + Variable op' : M' -> M' -> M'. + + Variable N : Set. + + Variable times : N -> M -> M'. + + Variable absorb : (c:N)(times c neutral)=neutral'. + Variable distr : (a,b:M) (c:N) (times c (op a b)) = (op' (times c a) (times c b)). + + Lemma MapFold_distr_l : (f:ad->A->M) (m:(Map A)) (c:N) + (times c (MapFold A M neutral op f m))= + (MapFold A M' neutral' op' [a:ad][y:A] (times c (f a y)) m). + Proof. + Intros. Apply MapFold_distr_r with times:=[a:M][b:N](times b a); Assumption. + Qed. + +End MapFoldDistrL. + +Section MapFoldExists. + + Variable A : Set. + + Lemma MapFold_orb_1 : (f:ad->A->bool) (m:(Map A)) (pf:ad->ad) + (MapFold1 A bool false orb f pf m)= + (Cases (MapSweep1 A f pf m) of + (SOME _) => true + | _ => false + end). + Proof. + Induction m. Trivial. + Intros a y pf. Simpl. Unfold MapSweep2. (Case (f (pf a) y); Reflexivity). + Intros. Simpl. Rewrite (H [a0:ad](pf (ad_double a0))). + Rewrite (H0 [a0:ad](pf (ad_double_plus_un a0))). + Case (MapSweep1 A f [a0:ad](pf (ad_double a0)) m0); Reflexivity. + Qed. + + Lemma MapFold_orb : (f:ad->A->bool) (m:(Map A)) (MapFold A bool false orb f m)= + (Cases (MapSweep A f m) of + (SOME _) => true + | _ => false + end). + Proof. + Intros. Exact (MapFold_orb_1 f m [a:ad]a). + Qed. + +End MapFoldExists. + +Section DMergeDef. + + Variable A : Set. + + Definition DMerge := (MapFold (Map A) (Map A) (M0 A) (MapMerge A) [_:ad][m:(Map A)] m). + + Lemma in_dom_DMerge_1 : (m:(Map (Map A))) (a:ad) (in_dom A a (DMerge m))= + (Cases (MapSweep ? [_:ad][m0:(Map A)] (in_dom A a m0) m) of + (SOME _) => true + | _ => false + end). + Proof. + Unfold DMerge. Intros. + Rewrite (MapFold_distr_l (Map A) (Map A) (M0 A) (MapMerge A) bool false + orb ad (in_dom A) [c:ad](refl_equal ? ?) (in_dom_merge A)). + Apply MapFold_orb. + Qed. + + Lemma in_dom_DMerge_2 : (m:(Map (Map A))) (a:ad) (in_dom A a (DMerge m))=true -> + {b:ad & {m0:(Map A) | (MapGet ? m b)=(SOME ? m0) /\ + (in_dom A a m0)=true}}. + Proof. + Intros m a. Rewrite in_dom_DMerge_1. + Elim (option_sum ? (MapSweep (Map A) [_:ad][m0:(Map A)](in_dom A a m0) m)). + Intro H. Elim H. Intro r. Elim r. Intros b m0 H0. Intro. Split with b. Split with m0. + Split. Exact (MapSweep_semantics_2 ? ? ? ? ? H0). + Exact (MapSweep_semantics_1 ? ? ? ? ? H0). + Intro H. Rewrite H. Intro. Discriminate H0. + Qed. + + Lemma in_dom_DMerge_3 : (m:(Map (Map A))) (a,b:ad) (m0:(Map A)) + (MapGet ? m a)=(SOME ? m0) -> (in_dom A b m0)=true -> + (in_dom A b (DMerge m))=true. + Proof. + Intros m a b m0 H H0. Rewrite in_dom_DMerge_1. + Elim (MapSweep_semantics_4 ? [_:ad][m'0:(Map A)](in_dom A b m'0) ? ? ? H H0). + Intros a' H1. Elim H1. Intros m'0 H2. Rewrite H2. Reflexivity. + Qed. + +End DMergeDef. |