diff options
Diffstat (limited to 'theories7/IntMap/Mapcanon.v')
-rw-r--r-- | theories7/IntMap/Mapcanon.v | 376 |
1 files changed, 376 insertions, 0 deletions
diff --git a/theories7/IntMap/Mapcanon.v b/theories7/IntMap/Mapcanon.v new file mode 100644 index 00000000..7beb1fd4 --- /dev/null +++ b/theories7/IntMap/Mapcanon.v @@ -0,0 +1,376 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Mapcanon.v,v 1.1.2.1 2004/07/16 19:31:28 herbelin Exp $ i*) + +Require Bool. +Require Sumbool. +Require Arith. +Require ZArith. +Require Addr. +Require Adist. +Require Addec. +Require Map. +Require Mapaxioms. +Require Mapiter. +Require Fset. +Require PolyList. +Require Lsort. +Require Mapsubset. +Require Mapcard. + +Section MapCanon. + + Variable A : Set. + + Inductive mapcanon : (Map A) -> Prop := + M0_canon : (mapcanon (M0 A)) + | M1_canon : (a:ad) (y:A) (mapcanon (M1 A a y)) + | M2_canon : (m1,m2:(Map A)) (mapcanon m1) -> (mapcanon m2) -> + (le (2) (MapCard A (M2 A m1 m2))) -> (mapcanon (M2 A m1 m2)). + + Lemma mapcanon_M2 : + (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (le (2) (MapCard A (M2 A m1 m2))). + Proof. + Intros. Inversion H. Assumption. + Qed. + + Lemma mapcanon_M2_1 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (mapcanon m1). + Proof. + Intros. Inversion H. Assumption. + Qed. + + Lemma mapcanon_M2_2 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (mapcanon m2). + Proof. + Intros. Inversion H. Assumption. + Qed. + + Lemma M2_eqmap_1 : (m0,m1,m2,m3:(Map A)) + (eqmap A (M2 A m0 m1) (M2 A m2 m3)) -> (eqmap A m0 m2). + Proof. + Unfold eqmap eqm. Intros. Rewrite <- (ad_double_div_2 a). + Rewrite <- (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m0 m1). + Rewrite <- (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m2 m3). + Exact (H (ad_double a)). + Qed. + + Lemma M2_eqmap_2 : (m0,m1,m2,m3:(Map A)) + (eqmap A (M2 A m0 m1) (M2 A m2 m3)) -> (eqmap A m1 m3). + Proof. + Unfold eqmap eqm. Intros. Rewrite <- (ad_double_plus_un_div_2 a). + Rewrite <- (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m0 m1). + Rewrite <- (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m2 m3). + Exact (H (ad_double_plus_un a)). + Qed. + + Lemma mapcanon_unique : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> + (eqmap A m m') -> m=m'. + Proof. + Induction m. Induction m'. Trivial. + Intros a y H H0 H1. Cut (NONE A)=(MapGet A (M1 A a y) a). Simpl. Rewrite (ad_eq_correct a). + Intro. Discriminate H2. + Exact (H1 a). + Intros. Cut (le (2) (MapCard A (M0 A))). Intro. Elim (le_Sn_O ? H4). + Rewrite (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H2). + Intros a y. Induction m'. Intros. Cut (MapGet A (M1 A a y) a)=(NONE A). Simpl. + Rewrite (ad_eq_correct a). Intro. Discriminate H2. + Exact (H1 a). + Intros a0 y0 H H0 H1. Cut (MapGet A (M1 A a y) a)=(MapGet A (M1 A a0 y0) a). Simpl. + Rewrite (ad_eq_correct a). Intro. Elim (sumbool_of_bool (ad_eq a0 a)). Intro H3. + Rewrite H3 in H2. Inversion H2. Rewrite (ad_eq_complete ? ? H3). Reflexivity. + Intro H3. Rewrite H3 in H2. Discriminate H2. + Exact (H1 a). + Intros. Cut (le (2) (MapCard A (M1 A a y))). Intro. Elim (le_Sn_O ? (le_S_n ? ? H4)). + Rewrite (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H2). + Induction m'. Intros. Cut (le (2) (MapCard A (M0 A))). Intro. Elim (le_Sn_O ? H4). + Rewrite <- (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H1). + Intros a y H1 H2 H3. Cut (le (2) (MapCard A (M1 A a y))). Intro. + Elim (le_Sn_O ? (le_S_n ? ? H4)). + Rewrite <- (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H1). + Intros. Rewrite (H m2). Rewrite (H0 m3). Reflexivity. + Exact (mapcanon_M2_2 ? ? H3). + Exact (mapcanon_M2_2 ? ? H4). + Exact (M2_eqmap_2 ? ? ? ? H5). + Exact (mapcanon_M2_1 ? ? H3). + Exact (mapcanon_M2_1 ? ? H4). + Exact (M2_eqmap_1 ? ? ? ? H5). + Qed. + + Lemma MapPut1_canon : + (p:positive) (a,a':ad) (y,y':A) (mapcanon (MapPut1 A a y a' y' p)). + Proof. + Induction p. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M1_canon. + Apply M1_canon. + Apply le_n. + Apply M2_canon. Apply M1_canon. + Apply M1_canon. + Apply le_n. + Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M0_canon. + Apply H. + Simpl. Rewrite MapCard_Put1_equals_2. Apply le_n. + Apply M2_canon. Apply H. + Apply M0_canon. + Simpl. Rewrite MapCard_Put1_equals_2. Apply le_n. + Simpl. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M1_canon. + Apply M1_canon. + Simpl. Apply le_n. + Apply M2_canon. Apply M1_canon. + Apply M1_canon. + Simpl. Apply le_n. + Qed. + + Lemma MapPut_canon : + (m:(Map A)) (mapcanon m) -> (a:ad) (y:A) (mapcanon (MapPut A m a y)). + Proof. + Induction m. Intros. Simpl. Apply M1_canon. + Intros a0 y0 H a y. Simpl. Case (ad_xor a0 a). Apply M1_canon. + Intro. Apply MapPut1_canon. + Intros. Simpl. Elim a. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). + Exact (mapcanon_M2_2 m0 m1 H1). + Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 ? ? H1). + Apply le_plus_plus. Exact (MapCard_Put_lb A m0 ad_z y). + Apply le_n. + Intro. Case p. Intro. Apply M2_canon. Exact (mapcanon_M2_1 m0 m1 H1). + Apply H0. Exact (mapcanon_M2_2 m0 m1 H1). + Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). + Exact (mapcanon_M2 m0 m1 H1). + Apply le_reg_l. Exact (MapCard_Put_lb A m1 (ad_x p0) y). + Intro. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). + Exact (mapcanon_M2_2 m0 m1 H1). + Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). + Exact (mapcanon_M2 m0 m1 H1). + Apply le_reg_r. Exact (MapCard_Put_lb A m0 (ad_x p0) y). + Apply M2_canon. Apply (mapcanon_M2_1 m0 m1 H1). + Apply H0. Apply (mapcanon_M2_2 m0 m1 H1). + Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). + Exact (mapcanon_M2 m0 m1 H1). + Apply le_reg_l. Exact (MapCard_Put_lb A m1 ad_z y). + Qed. + + Lemma MapPut_behind_canon : (m:(Map A)) (mapcanon m) -> + (a:ad) (y:A) (mapcanon (MapPut_behind A m a y)). + Proof. + Induction m. Intros. Simpl. Apply M1_canon. + Intros a0 y0 H a y. Simpl. Case (ad_xor a0 a). Apply M1_canon. + Intro. Apply MapPut1_canon. + Intros. Simpl. Elim a. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). + Exact (mapcanon_M2_2 m0 m1 H1). + Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 ? ? H1). + Apply le_plus_plus. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m0 ad_z y). + Apply le_n. + Intro. Case p. Intro. Apply M2_canon. Exact (mapcanon_M2_1 m0 m1 H1). + Apply H0. Exact (mapcanon_M2_2 m0 m1 H1). + Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). + Exact (mapcanon_M2 m0 m1 H1). + Apply le_reg_l. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m1 (ad_x p0) y). + Intro. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). + Exact (mapcanon_M2_2 m0 m1 H1). + Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). + Exact (mapcanon_M2 m0 m1 H1). + Apply le_reg_r. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m0 (ad_x p0) y). + Apply M2_canon. Apply (mapcanon_M2_1 m0 m1 H1). + Apply H0. Apply (mapcanon_M2_2 m0 m1 H1). + Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). + Exact (mapcanon_M2 m0 m1 H1). + Apply le_reg_l. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m1 ad_z y). + Qed. + + Lemma makeM2_canon : + (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> (mapcanon (makeM2 A m m')). + Proof. + Intro. Case m. Intro. Case m'. Intros. Exact M0_canon. + Intros a y H H0. Exact (M1_canon (ad_double_plus_un a) y). + Intros. Simpl. (Apply M2_canon; Try Assumption). Exact (mapcanon_M2 m0 m1 H0). + Intros a y m'. Case m'. Intros. Exact (M1_canon (ad_double a) y). + Intros a0 y0 H H0. Simpl. (Apply M2_canon; Try Assumption). Apply le_n. + Intros. Simpl. (Apply M2_canon; Try Assumption). + Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H0). + Exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))). + Simpl. Intros. (Apply M2_canon; Try Assumption). + Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H). + Exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')). + Qed. + + Fixpoint MapCanonicalize [m:(Map A)] : (Map A) := + Cases m of + (M2 m0 m1) => (makeM2 A (MapCanonicalize m0) (MapCanonicalize m1)) + | _ => m + end. + + Lemma mapcanon_exists_1 : (m:(Map A)) (eqmap A m (MapCanonicalize m)). + Proof. + Induction m. Apply eqmap_refl. + Intros. Apply eqmap_refl. + Intros. Simpl. Unfold eqmap eqm. Intro. + Rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a). + Rewrite MapGet_M2_bit_0_if. Rewrite MapGet_M2_bit_0_if. + Rewrite <- (H (ad_div_2 a)). Rewrite <- (H0 (ad_div_2 a)). Reflexivity. + Qed. + + Lemma mapcanon_exists_2 : (m:(Map A)) (mapcanon (MapCanonicalize m)). + Proof. + Induction m. Apply M0_canon. + Intros. Simpl. Apply M1_canon. + Intros. Simpl. (Apply makeM2_canon; Assumption). + Qed. + + Lemma mapcanon_exists : + (m:(Map A)) {m':(Map A) | (eqmap A m m') /\ (mapcanon m')}. + Proof. + Intro. Split with (MapCanonicalize m). Split. Apply mapcanon_exists_1. + Apply mapcanon_exists_2. + Qed. + + Lemma MapRemove_canon : + (m:(Map A)) (mapcanon m) -> (a:ad) (mapcanon (MapRemove A m a)). + Proof. + Induction m. Intros. Exact M0_canon. + Intros a y H a0. Simpl. Case (ad_eq a a0). Exact M0_canon. + Assumption. + Intros. Simpl. Case (ad_bit_0 a). Apply makeM2_canon. Exact (mapcanon_M2_1 ? ? H1). + Apply H0. Exact (mapcanon_M2_2 ? ? H1). + Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H1). + Exact (mapcanon_M2_2 ? ? H1). + Qed. + + Lemma MapMerge_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> + (mapcanon (MapMerge A m m')). + Proof. + Induction m. Intros. Exact H0. + Simpl. Intros a y m' H H0. Exact (MapPut_behind_canon m' H0 a y). + Induction m'. Intros. Exact H1. + Intros a y H1 H2. Unfold MapMerge. Exact (MapPut_canon ? H1 a y). + Intros. Simpl. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H3). + Exact (mapcanon_M2_1 ? ? H4). + Apply H0. Exact (mapcanon_M2_2 ? ? H3). + Exact (mapcanon_M2_2 ? ? H4). + Change (le (2) (MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3)))). + Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H3). + Exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)). + Qed. + + Lemma MapDelta_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> + (mapcanon (MapDelta A m m')). + Proof. + Induction m. Intros. Exact H0. + Simpl. Intros a y m' H H0. Case (MapGet A m' a). Exact (MapPut_canon m' H0 a y). + Intro. Exact (MapRemove_canon m' H0 a). + Induction m'. Intros. Exact H1. + Unfold MapDelta. Intros a y H1 H2. Case (MapGet A (M2 A m0 m1) a). + Exact (MapPut_canon ? H1 a y). + Intro. Exact (MapRemove_canon ? H1 a). + Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H3). + Exact (mapcanon_M2_1 ? ? H4). + Apply H0. Exact (mapcanon_M2_2 ? ? H3). + Exact (mapcanon_M2_2 ? ? H4). + Qed. + + Variable B : Set. + + Lemma MapDomRestrTo_canon : (m:(Map A)) (mapcanon m) -> + (m':(Map B)) (mapcanon (MapDomRestrTo A B m m')). + Proof. + Induction m. Intros. Exact M0_canon. + Simpl. Intros a y H m'. Case (MapGet B m' a). Exact M0_canon. + Intro. Apply M1_canon. + Induction m'. Exact M0_canon. + Unfold MapDomRestrTo. Intros a y. Case (MapGet A (M2 A m0 m1) a). Exact M0_canon. + Intro. Apply M1_canon. + Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1). + Apply H0. Exact (mapcanon_M2_2 m0 m1 H1). + Qed. + + Lemma MapDomRestrBy_canon : (m:(Map A)) (mapcanon m) -> + (m':(Map B)) (mapcanon (MapDomRestrBy A B m m')). + Proof. + Induction m. Intros. Exact M0_canon. + Simpl. Intros a y H m'. Case (MapGet B m' a). Assumption. + Intro. Exact M0_canon. + Induction m'. Exact H1. + Intros a y. Simpl. Case (ad_bit_0 a). Apply makeM2_canon. Exact (mapcanon_M2_1 ? ? H1). + Apply MapRemove_canon. Exact (mapcanon_M2_2 ? ? H1). + Apply makeM2_canon. Apply MapRemove_canon. Exact (mapcanon_M2_1 ? ? H1). + Exact (mapcanon_M2_2 ? ? H1). + Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H1). + Apply H0. Exact (mapcanon_M2_2 ? ? H1). + Qed. + + Lemma Map_of_alist_canon : (l:(alist A)) (mapcanon (Map_of_alist A l)). + Proof. + Induction l. Exact M0_canon. + Intro r. Elim r. Intros a y l0 H. Simpl. Apply MapPut_canon. Assumption. + Qed. + + Lemma MapSubset_c_1 : (m:(Map A)) (m':(Map B)) (mapcanon m) -> + (MapSubset A B m m') -> (MapDomRestrBy A B m m')=(M0 A). + Proof. + Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. Assumption. + Apply M0_canon. + Exact (MapSubset_imp_2 ? ? m m' H0). + Qed. + + Lemma MapSubset_c_2 : (m:(Map A)) (m':(Map B)) + (MapDomRestrBy A B m m')=(M0 A) -> (MapSubset A B m m'). + Proof. + Intros. Apply MapSubset_2_imp. Unfold MapSubset_2. Rewrite H. Apply eqmap_refl. + Qed. + +End MapCanon. + +Section FSetCanon. + + Variable A : Set. + + Lemma MapDom_canon : (m:(Map A)) (mapcanon A m) -> (mapcanon unit (MapDom A m)). + Proof. + Induction m. Intro. Exact (M0_canon unit). + Intros a y H. Exact (M1_canon unit a ?). + Intros. Simpl. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 A ? ? H1). + Apply H0. Exact (mapcanon_M2_2 A ? ? H1). + Change (le (2) (MapCard unit (MapDom A (M2 A m0 m1)))). Rewrite <- MapCard_Dom. + Exact (mapcanon_M2 A ? ? H1). + Qed. + +End FSetCanon. + +Section MapFoldCanon. + + Variable A, B : Set. + + Lemma MapFold_canon_1 : (m0:(Map B)) (mapcanon B m0) -> + (op : (Map B) -> (Map B) -> (Map B)) + ((m1:(Map B)) (mapcanon B m1) -> (m2:(Map B)) (mapcanon B m2) -> + (mapcanon B (op m1 m2))) -> + (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) -> + (m:(Map A)) (pf : ad->ad) (mapcanon B (MapFold1 A (Map B) m0 op f pf m)). + Proof. + Induction m. Intro. Exact H. + Intros a y pf. Simpl. Apply H1. + Intros. Simpl. Apply H0. Apply H2. + Apply H3. + Qed. + + Lemma MapFold_canon : (m0:(Map B)) (mapcanon B m0) -> + (op : (Map B) -> (Map B) -> (Map B)) + ((m1:(Map B)) (mapcanon B m1) -> (m2:(Map B)) (mapcanon B m2) -> + (mapcanon B (op m1 m2))) -> + (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) -> + (m:(Map A)) (mapcanon B (MapFold A (Map B) m0 op f m)). + Proof. + Intros. Exact (MapFold_canon_1 m0 H op H0 f H1 m [a:ad]a). + Qed. + + Lemma MapCollect_canon : + (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) -> + (m:(Map A)) (mapcanon B (MapCollect A B f m)). + Proof. + Intros. Rewrite MapCollect_as_Fold. Apply MapFold_canon. Apply M0_canon. + Intros. Exact (MapMerge_canon B m1 m2 H0 H1). + Assumption. + Qed. + +End MapFoldCanon. |