summaryrefslogtreecommitdiff
path: root/theories7/IntMap/Map.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/IntMap/Map.v')
-rw-r--r--theories7/IntMap/Map.v786
1 files changed, 0 insertions, 786 deletions
diff --git a/theories7/IntMap/Map.v b/theories7/IntMap/Map.v
deleted file mode 100644
index 00ba3f8a..00000000
--- a/theories7/IntMap/Map.v
+++ /dev/null
@@ -1,786 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Map.v,v 1.1.2.1 2004/07/16 19:31:27 herbelin Exp $ i*)
-
-(** Definition of finite sets as trees indexed by adresses *)
-
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-
-
-Section MapDefs.
-
-(** We define maps from ad to A. *)
- Variable A : Set.
-
- Inductive Map : Set :=
- M0 : Map
- | M1 : ad -> A -> Map
- | M2 : Map -> Map -> Map.
-
- Inductive option : Set :=
- NONE : option
- | SOME : A -> option.
-
- Lemma option_sum : (o:option) {y:A | o=(SOME y)}+{o=NONE}.
- Proof.
- Induction o. Right . Reflexivity.
- Left . Split with a. Reflexivity.
- Qed.
-
- (** The semantics of maps is given by the function [MapGet].
- The semantics of a map [m] is a partial, finite function from
- [ad] to [A]: *)
-
- Fixpoint MapGet [m:Map] : ad -> option :=
- Cases m of
- M0 => [a:ad] NONE
- | (M1 x y) => [a:ad]
- if (ad_eq x a)
- then (SOME y)
- else NONE
- | (M2 m1 m2) => [a:ad]
- Cases a of
- ad_z => (MapGet m1 ad_z)
- | (ad_x xH) => (MapGet m2 ad_z)
- | (ad_x (xO p)) => (MapGet m1 (ad_x p))
- | (ad_x (xI p)) => (MapGet m2 (ad_x p))
- end
- end.
-
- Definition newMap := M0.
-
- Definition MapSingleton := M1.
-
- Definition eqm := [g,g':ad->option] (a:ad) (g a)=(g' a).
-
- Lemma newMap_semantics : (eqm (MapGet newMap) [a:ad] NONE).
- Proof.
- Simpl. Unfold eqm. Trivial.
- Qed.
-
- Lemma MapSingleton_semantics : (a:ad) (y:A)
- (eqm (MapGet (MapSingleton a y)) [a':ad] if (ad_eq a a') then (SOME y) else NONE).
- Proof.
- Simpl. Unfold eqm. Trivial.
- Qed.
-
- Lemma M1_semantics_1 : (a:ad) (y:A) (MapGet (M1 a y) a)=(SOME y).
- Proof.
- Unfold MapGet. Intros. Rewrite (ad_eq_correct a). Reflexivity.
- Qed.
-
- Lemma M1_semantics_2 :
- (a,a':ad) (y:A) (ad_eq a a')=false -> (MapGet (M1 a y) a')=NONE.
- Proof.
- Intros. Simpl. Rewrite H. Reflexivity.
- Qed.
-
- Lemma Map2_semantics_1 :
- (m,m':Map) (eqm (MapGet m) [a:ad] (MapGet (M2 m m') (ad_double a))).
- Proof.
- Unfold eqm. Induction a; Trivial.
- Qed.
-
- Lemma Map2_semantics_1_eq : (m,m':Map) (f:ad->option) (eqm (MapGet (M2 m m')) f)
- -> (eqm (MapGet m) [a:ad] (f (ad_double a))).
- Proof.
- Unfold eqm.
- Intros.
- Rewrite <- (H (ad_double a)).
- Exact (Map2_semantics_1 m m' a).
- Qed.
-
- Lemma Map2_semantics_2 :
- (m,m':Map) (eqm (MapGet m') [a:ad] (MapGet (M2 m m') (ad_double_plus_un a))).
- Proof.
- Unfold eqm. Induction a; Trivial.
- Qed.
-
- Lemma Map2_semantics_2_eq : (m,m':Map) (f:ad->option) (eqm (MapGet (M2 m m')) f)
- -> (eqm (MapGet m') [a:ad] (f (ad_double_plus_un a))).
- Proof.
- Unfold eqm.
- Intros.
- Rewrite <- (H (ad_double_plus_un a)).
- Exact (Map2_semantics_2 m m' a).
- Qed.
-
- Lemma MapGet_M2_bit_0_0 : (a:ad) (ad_bit_0 a)=false
- -> (m,m':Map) (MapGet (M2 m m') a)=(MapGet m (ad_div_2 a)).
- Proof.
- Induction a; Trivial. Induction p. Intros. Discriminate H0.
- Trivial.
- Intros. Discriminate H.
- Qed.
-
- Lemma MapGet_M2_bit_0_1 : (a:ad) (ad_bit_0 a)=true
- -> (m,m':Map) (MapGet (M2 m m') a)=(MapGet m' (ad_div_2 a)).
- Proof.
- Induction a. Intros. Discriminate H.
- Induction p. Trivial.
- Intros. Discriminate H0.
- Trivial.
- Qed.
-
- Lemma MapGet_M2_bit_0_if : (m,m':Map) (a:ad) (MapGet (M2 m m') a)=
- (if (ad_bit_0 a) then (MapGet m' (ad_div_2 a)) else (MapGet m (ad_div_2 a))).
- Proof.
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H. Rewrite H.
- Apply MapGet_M2_bit_0_1; Assumption.
- Intro H. Rewrite H. Apply MapGet_M2_bit_0_0; Assumption.
- Qed.
-
- Lemma MapGet_M2_bit_0 : (m,m',m'':Map)
- (a:ad) (if (ad_bit_0 a) then (MapGet (M2 m' m) a) else (MapGet (M2 m m'') a))=
- (MapGet m (ad_div_2 a)).
- Proof.
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H. Rewrite H.
- Apply MapGet_M2_bit_0_1; Assumption.
- Intro H. Rewrite H. Apply MapGet_M2_bit_0_0; Assumption.
- Qed.
-
- Lemma Map2_semantics_3 : (m,m':Map) (eqm (MapGet (M2 m m'))
- [a:ad] Cases (ad_bit_0 a) of
- false => (MapGet m (ad_div_2 a))
- | true => (MapGet m' (ad_div_2 a))
- end).
- Proof.
- Unfold eqm.
- Induction a; Trivial.
- Induction p; Trivial.
- Qed.
-
- Lemma Map2_semantics_3_eq : (m,m':Map) (f,f':ad->option)
- (eqm (MapGet m) f) -> (eqm (MapGet m') f') -> (eqm (MapGet (M2 m m'))
- [a:ad] Cases (ad_bit_0 a) of
- false => (f (ad_div_2 a))
- | true => (f' (ad_div_2 a))
- end).
- Proof.
- Unfold eqm.
- Intros.
- Rewrite <- (H (ad_div_2 a)).
- Rewrite <- (H0 (ad_div_2 a)).
- Exact (Map2_semantics_3 m m' a).
- Qed.
-
- Fixpoint MapPut1 [a:ad; y:A; a':ad; y':A; p:positive] : Map :=
- Cases p of
- (xO p') => let m = (MapPut1 (ad_div_2 a) y (ad_div_2 a') y' p') in
- Cases (ad_bit_0 a) of
- false => (M2 m M0)
- | true => (M2 M0 m)
- end
- | _ => Cases (ad_bit_0 a) of
- false => (M2 (M1 (ad_div_2 a) y) (M1 (ad_div_2 a') y'))
- | true => (M2 (M1 (ad_div_2 a') y') (M1 (ad_div_2 a) y))
- end
- end.
-
- Lemma MapGet_if_commute : (b:bool) (m,m':Map) (a:ad)
- (MapGet (if b then m else m') a)=(if b then (MapGet m a) else (MapGet m' a)).
- Proof.
- Intros. Case b; Trivial.
- Qed.
-
- (*i
- Lemma MapGet_M2_bit_0_1' : (m,m',m'',m''':Map)
- (a:ad) (MapGet (if (ad_bit_0 a) then (M2 m m') else (M2 m'' m''')) a)=
- (MapGet (if (ad_bit_0 a) then m' else m'') (ad_div_2 a)).
- Proof.
- Intros. Rewrite (MapGet_if_commute (ad_bit_0 a)). Rewrite (MapGet_if_commute (ad_bit_0 a)).
- Cut (ad_bit_0 a)=false\/(ad_bit_0 a)=true. Intros. Elim H. Intros. Rewrite H0.
- Apply MapGet_M2_bit_0_0. Assumption.
- Intros. Rewrite H0. Apply MapGet_M2_bit_0_1. Assumption.
- Case (ad_bit_0 a); Auto.
- Qed.
- i*)
-
- Lemma MapGet_if_same : (m:Map) (b:bool) (a:ad)
- (MapGet (if b then m else m) a)=(MapGet m a).
- Proof.
- Induction b;Trivial.
- Qed.
-
- Lemma MapGet_M2_bit_0_2 : (m,m',m'':Map)
- (a:ad) (MapGet (if (ad_bit_0 a) then (M2 m m') else (M2 m' m'')) a)=
- (MapGet m' (ad_div_2 a)).
- Proof.
- Intros. Rewrite MapGet_if_commute. Apply MapGet_M2_bit_0.
- Qed.
-
- Lemma MapPut1_semantics_1 : (p:positive) (a,a':ad) (y,y':A)
- (ad_xor a a')=(ad_x p)
- -> (MapGet (MapPut1 a y a' y' p) a)=(SOME y).
- Proof.
- Induction p. Intros. Unfold MapPut1. Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_1.
- Intros. Simpl. Rewrite MapGet_M2_bit_0_2. Apply H. Rewrite <- ad_xor_div_2. Rewrite H0.
- Reflexivity.
- Intros. Unfold MapPut1. Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_1.
- Qed.
-
- Lemma MapPut1_semantics_2 : (p:positive) (a,a':ad) (y,y':A)
- (ad_xor a a')=(ad_x p)
- -> (MapGet (MapPut1 a y a' y' p) a')=(SOME y').
- Proof.
- Induction p. Intros. Unfold MapPut1. Rewrite (ad_neg_bit_0_2 a a' p0 H0).
- Rewrite if_negb. Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_1.
- Intros. Simpl. Rewrite (ad_same_bit_0 a a' p0 H0). Rewrite MapGet_M2_bit_0_2.
- Apply H. Rewrite <- ad_xor_div_2. Rewrite H0. Reflexivity.
- Intros. Unfold MapPut1. Rewrite (ad_neg_bit_0_1 a a' H). Rewrite if_negb.
- Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_1.
- Qed.
-
- Lemma MapGet_M2_both_NONE : (m,m':Map) (a:ad)
- (MapGet m (ad_div_2 a))=NONE -> (MapGet m' (ad_div_2 a))=NONE ->
- (MapGet (M2 m m') a)=NONE.
- Proof.
- Intros. Rewrite (Map2_semantics_3 m m' a).
- Case (ad_bit_0 a); Assumption.
- Qed.
-
- Lemma MapPut1_semantics_3 : (p:positive) (a,a',a0:ad) (y,y':A)
- (ad_xor a a')=(ad_x p) -> (ad_eq a a0)=false -> (ad_eq a' a0)=false ->
- (MapGet (MapPut1 a y a' y' p) a0)=NONE.
- Proof.
- Induction p. Intros. Unfold MapPut1. Elim (ad_neq a a0 H1). Intro. Rewrite H3. Rewrite if_negb.
- Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_2. Apply ad_div_bit_neq. Assumption.
- Rewrite (ad_neg_bit_0_2 a a' p0 H0) in H3. Rewrite (negb_intro (ad_bit_0 a')).
- Rewrite (negb_intro (ad_bit_0 a0)). Rewrite H3. Reflexivity.
- Intro. Elim (ad_neq a' a0 H2). Intro. Rewrite (ad_neg_bit_0_2 a a' p0 H0). Rewrite H4.
- Rewrite (negb_elim (ad_bit_0 a0)). Rewrite MapGet_M2_bit_0_2.
- Apply M1_semantics_2; Assumption.
- Intro; Case (ad_bit_0 a); Apply MapGet_M2_both_NONE;
- Apply M1_semantics_2; Assumption.
- Intros. Simpl. Elim (ad_neq a a0 H1). Intro. Rewrite H3. Rewrite if_negb.
- Rewrite MapGet_M2_bit_0_2. Reflexivity.
- Intro. Elim (ad_neq a' a0 H2). Intro. Rewrite (ad_same_bit_0 a a' p0 H0). Rewrite H4.
- Rewrite if_negb. Rewrite MapGet_M2_bit_0_2. Reflexivity.
- Intro. Cut (ad_xor (ad_div_2 a) (ad_div_2 a'))=(ad_x p0). Intro.
- Case (ad_bit_0 a); Apply MapGet_M2_both_NONE; Trivial;
- Apply H; Assumption.
- Rewrite <- ad_xor_div_2. Rewrite H0. Reflexivity.
- Intros. Simpl. Elim (ad_neq a a0 H0). Intro. Rewrite H2. Rewrite if_negb.
- Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_2. Apply ad_div_bit_neq. Assumption.
- Rewrite (ad_neg_bit_0_1 a a' H) in H2. Rewrite (negb_intro (ad_bit_0 a')).
- Rewrite (negb_intro (ad_bit_0 a0)). Rewrite H2. Reflexivity.
- Intro. Elim (ad_neq a' a0 H1). Intro. Rewrite (ad_neg_bit_0_1 a a' H). Rewrite H3.
- Rewrite (negb_elim (ad_bit_0 a0)). Rewrite MapGet_M2_bit_0_2.
- Apply M1_semantics_2; Assumption.
- Intro. Case (ad_bit_0 a); Apply MapGet_M2_both_NONE; Apply M1_semantics_2; Assumption.
- Qed.
-
- Lemma MapPut1_semantics : (p:positive) (a,a':ad) (y,y':A)
- (ad_xor a a')=(ad_x p)
- -> (eqm (MapGet (MapPut1 a y a' y' p))
- [a0:ad] if (ad_eq a a0) then (SOME y)
- else if (ad_eq a' a0) then (SOME y') else NONE).
- Proof.
- Unfold eqm. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0.
- Rewrite <- (ad_eq_complete ? ? H0). Exact (MapPut1_semantics_1 p a a' y y' H).
- Intro H0. Rewrite H0. Elim (sumbool_of_bool (ad_eq a' a0)). Intro H1.
- Rewrite <- (ad_eq_complete ? ? H1). Rewrite (ad_eq_correct a').
- Exact (MapPut1_semantics_2 p a a' y y' H).
- Intro H1. Rewrite H1. Exact (MapPut1_semantics_3 p a a' a0 y y' H H0 H1).
- Qed.
-
- Lemma MapPut1_semantics' : (p:positive) (a,a':ad) (y,y':A)
- (ad_xor a a')=(ad_x p)
- -> (eqm (MapGet (MapPut1 a y a' y' p))
- [a0:ad] if (ad_eq a' a0) then (SOME y')
- else if (ad_eq a a0) then (SOME y) else NONE).
- Proof.
- Unfold eqm. Intros. Rewrite (MapPut1_semantics p a a' y y' H a0).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0.
- Rewrite <- (ad_eq_complete a a0 H0). Rewrite (ad_eq_comm a' a).
- Rewrite (ad_xor_eq_false a a' p H). Reflexivity.
- Intro H0. Rewrite H0. Reflexivity.
- Qed.
-
- Fixpoint MapPut [m:Map] : ad -> A -> Map :=
- Cases m of
- M0 => M1
- | (M1 a y) => [a':ad; y':A]
- Cases (ad_xor a a') of
- ad_z => (M1 a' y')
- | (ad_x p) => (MapPut1 a y a' y' p)
- end
- | (M2 m1 m2) => [a:ad; y:A]
- Cases a of
- ad_z => (M2 (MapPut m1 ad_z y) m2)
- | (ad_x xH) => (M2 m1 (MapPut m2 ad_z y))
- | (ad_x (xO p)) => (M2 (MapPut m1 (ad_x p) y) m2)
- | (ad_x (xI p)) => (M2 m1 (MapPut m2 (ad_x p) y))
- end
- end.
-
- Lemma MapPut_semantics_1 : (a:ad) (y:A) (a0:ad)
- (MapGet (MapPut M0 a y) a0)=(MapGet (M1 a y) a0).
- Proof.
- Trivial.
- Qed.
-
- Lemma MapPut_semantics_2_1 : (a:ad) (y,y':A) (a0:ad)
- (MapGet (MapPut (M1 a y) a y') a0)=(if (ad_eq a a0) then (SOME y') else NONE).
- Proof.
- Simpl. Intros. Rewrite (ad_xor_nilpotent a). Trivial.
- Qed.
-
- Lemma MapPut_semantics_2_2 : (a,a':ad) (y,y':A) (a0:ad) (a'':ad) (ad_xor a a')=a'' ->
- (MapGet (MapPut (M1 a y) a' y') a0)=
- (if (ad_eq a' a0) then (SOME y') else
- if (ad_eq a a0) then (SOME y) else NONE).
- Proof.
- Induction a''. Intro. Rewrite (ad_xor_eq ? ? H). Rewrite MapPut_semantics_2_1.
- Case (ad_eq a' a0); Trivial.
- Intros. Simpl. Rewrite H. Rewrite (MapPut1_semantics p a a' y y' H a0).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0. Rewrite <- (ad_eq_complete ? ? H0).
- Rewrite (ad_eq_comm a' a). Rewrite (ad_xor_eq_false ? ? ? H). Reflexivity.
- Intro H0. Rewrite H0. Reflexivity.
- Qed.
-
- Lemma MapPut_semantics_2 : (a,a':ad) (y,y':A) (a0:ad)
- (MapGet (MapPut (M1 a y) a' y') a0)=
- (if (ad_eq a' a0) then (SOME y') else
- if (ad_eq a a0) then (SOME y) else NONE).
- Proof.
- Intros. Apply MapPut_semantics_2_2 with a'':=(ad_xor a a'); Trivial.
- Qed.
-
- Lemma MapPut_semantics_3_1 : (m,m':Map) (a:ad) (y:A)
- (MapPut (M2 m m') a y)=(if (ad_bit_0 a) then (M2 m (MapPut m' (ad_div_2 a) y))
- else (M2 (MapPut m (ad_div_2 a) y) m')).
- Proof.
- Induction a. Trivial.
- Induction p; Trivial.
- Qed.
-
- Lemma MapPut_semantics : (m:Map) (a:ad) (y:A)
- (eqm (MapGet (MapPut m a y)) [a':ad] if (ad_eq a a') then (SOME y) else (MapGet m a')).
- Proof.
- Unfold eqm. Induction m. Exact MapPut_semantics_1.
- Intros. Unfold 2 MapGet. Apply MapPut_semantics_2; Assumption.
- Intros. Rewrite MapPut_semantics_3_1. Rewrite (MapGet_M2_bit_0_if m0 m1 a0).
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H1. Rewrite H1. Rewrite MapGet_M2_bit_0_if.
- Elim (sumbool_of_bool (ad_bit_0 a0)). Intro H2. Rewrite H2.
- Rewrite (H0 (ad_div_2 a) y (ad_div_2 a0)). Elim (sumbool_of_bool (ad_eq a a0)).
- Intro H3. Rewrite H3. Rewrite (ad_div_eq ? ? H3). Reflexivity.
- Intro H3. Rewrite H3. Rewrite <- H2 in H1. Rewrite (ad_div_bit_neq ? ? H3 H1). Reflexivity.
- Intro H2. Rewrite H2. Rewrite (ad_eq_comm a a0). Rewrite (ad_bit_0_neq a0 a H2 H1).
- Reflexivity.
- Intro H1. Rewrite H1. Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a0)).
- Intro H2. Rewrite H2. Rewrite (ad_bit_0_neq a a0 H1 H2). Reflexivity.
- Intro H2. Rewrite H2. Rewrite (H (ad_div_2 a) y (ad_div_2 a0)).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H3. Rewrite H3.
- Rewrite (ad_div_eq a a0 H3). Reflexivity.
- Intro H3. Rewrite H3. Rewrite <- H2 in H1. Rewrite (ad_div_bit_neq a a0 H3 H1). Reflexivity.
- Qed.
-
- Fixpoint MapPut_behind [m:Map] : ad -> A -> Map :=
- Cases m of
- M0 => M1
- | (M1 a y) => [a':ad; y':A]
- Cases (ad_xor a a') of
- ad_z => m
- | (ad_x p) => (MapPut1 a y a' y' p)
- end
- | (M2 m1 m2) => [a:ad; y:A]
- Cases a of
- ad_z => (M2 (MapPut_behind m1 ad_z y) m2)
- | (ad_x xH) => (M2 m1 (MapPut_behind m2 ad_z y))
- | (ad_x (xO p)) => (M2 (MapPut_behind m1 (ad_x p) y) m2)
- | (ad_x (xI p)) => (M2 m1 (MapPut_behind m2 (ad_x p) y))
- end
- end.
-
- Lemma MapPut_behind_semantics_3_1 : (m,m':Map) (a:ad) (y:A)
- (MapPut_behind (M2 m m') a y)=
- (if (ad_bit_0 a) then (M2 m (MapPut_behind m' (ad_div_2 a) y))
- else (M2 (MapPut_behind m (ad_div_2 a) y) m')).
- Proof.
- Induction a. Trivial.
- Induction p; Trivial.
- Qed.
-
- Lemma MapPut_behind_as_before_1 : (a,a',a0:ad) (ad_eq a' a0)=false ->
- (y,y':A) (MapGet (MapPut (M1 a y) a' y') a0)
- =(MapGet (MapPut_behind (M1 a y) a' y') a0).
- Proof.
- Intros a a' a0. Simpl. Intros H y y'. Elim (ad_sum (ad_xor a a')). Intro H0. Elim H0.
- Intros p H1. Rewrite H1. Reflexivity.
- Intro H0. Rewrite H0. Rewrite (ad_xor_eq ? ? H0). Rewrite (M1_semantics_2 a' a0 y H).
- Exact (M1_semantics_2 a' a0 y' H).
- Qed.
-
- Lemma MapPut_behind_as_before : (m:Map) (a:ad) (y:A)
- (a0:ad) (ad_eq a a0)=false ->
- (MapGet (MapPut m a y) a0)=(MapGet (MapPut_behind m a y) a0).
- Proof.
- Induction m. Trivial.
- Intros a y a' y' a0 H. Exact (MapPut_behind_as_before_1 a a' a0 H y y').
- Intros. Rewrite MapPut_semantics_3_1. Rewrite MapPut_behind_semantics_3_1.
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. Rewrite H2. Rewrite MapGet_M2_bit_0_if.
- Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a0)). Intro H3.
- Rewrite H3. Apply H0. Rewrite <- H3 in H2. Exact (ad_div_bit_neq a a0 H1 H2).
- Intro H3. Rewrite H3. Reflexivity.
- Intro H2. Rewrite H2. Rewrite MapGet_M2_bit_0_if. Rewrite MapGet_M2_bit_0_if.
- Elim (sumbool_of_bool (ad_bit_0 a0)). Intro H3. Rewrite H3. Reflexivity.
- Intro H3. Rewrite H3. Apply H. Rewrite <- H3 in H2. Exact (ad_div_bit_neq a a0 H1 H2).
- Qed.
-
- Lemma MapPut_behind_new : (m:Map) (a:ad) (y:A)
- (MapGet (MapPut_behind m a y) a)=(Cases (MapGet m a) of
- (SOME y') => (SOME y')
- | _ => (SOME y)
- end).
- Proof.
- Induction m. Simpl. Intros. Rewrite (ad_eq_correct a). Reflexivity.
- Intros. Elim (ad_sum (ad_xor a a1)). Intro H. Elim H. Intros p H0. Simpl.
- Rewrite H0. Rewrite (ad_xor_eq_false a a1 p). Exact (MapPut1_semantics_2 p a a1 a0 y H0).
- Assumption.
- Intro H. Simpl. Rewrite H. Rewrite <- (ad_xor_eq ? ? H). Rewrite (ad_eq_correct a).
- Exact (M1_semantics_1 a a0).
- Intros. Rewrite MapPut_behind_semantics_3_1. Rewrite (MapGet_M2_bit_0_if m0 m1 a).
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H1. Rewrite H1. Rewrite (MapGet_M2_bit_0_1 a H1).
- Exact (H0 (ad_div_2 a) y).
- Intro H1. Rewrite H1. Rewrite (MapGet_M2_bit_0_0 a H1). Exact (H (ad_div_2 a) y).
- Qed.
-
- Lemma MapPut_behind_semantics : (m:Map) (a:ad) (y:A)
- (eqm (MapGet (MapPut_behind m a y))
- [a':ad] Cases (MapGet m a') of
- (SOME y') => (SOME y')
- | _ => if (ad_eq a a') then (SOME y) else NONE
- end).
- Proof.
- Unfold eqm. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H.
- Rewrite (ad_eq_complete ? ? H). Apply MapPut_behind_new.
- Intro H. Rewrite H. Rewrite <- (MapPut_behind_as_before m a y a0 H).
- Rewrite (MapPut_semantics m a y a0). Rewrite H. Case (MapGet m a0); Trivial.
- Qed.
-
- Definition makeM2 := [m,m':Map] Cases m m' of
- M0 M0 => M0
- | M0 (M1 a y) => (M1 (ad_double_plus_un a) y)
- | (M1 a y) M0 => (M1 (ad_double a) y)
- | _ _ => (M2 m m')
- end.
-
- Lemma makeM2_M2 : (m,m':Map) (eqm (MapGet (makeM2 m m')) (MapGet (M2 m m'))).
- Proof.
- Unfold eqm. Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H.
- Rewrite (MapGet_M2_bit_0_1 a H m m'). Case m'. Case m. Reflexivity.
- Intros a0 y. Simpl. Rewrite (ad_bit_0_1_not_double a H a0). Reflexivity.
- Intros m1 m2. Unfold makeM2. Rewrite MapGet_M2_bit_0_1. Reflexivity.
- Assumption.
- Case m. Intros a0 y. Simpl. Elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))).
- Intro H0. Rewrite H0. Rewrite (ad_eq_complete ? ? H0). Rewrite (ad_div_2_double_plus_un a H).
- Rewrite (ad_eq_correct a). Reflexivity.
- Intro H0. Rewrite H0. Rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0.
- Rewrite (ad_not_div_2_not_double_plus_un a a0 H0). Reflexivity.
- Intros a0 y0 a1 y1. Unfold makeM2. Rewrite MapGet_M2_bit_0_1. Reflexivity.
- Assumption.
- Intros m1 m2 a0 y. Unfold makeM2. Rewrite MapGet_M2_bit_0_1. Reflexivity.
- Assumption.
- Intros m1 m2. Unfold makeM2.
- Cut (MapGet (M2 m (M2 m1 m2)) a)=(MapGet (M2 m1 m2) (ad_div_2 a)).
- Case m; Trivial.
- Exact (MapGet_M2_bit_0_1 a H m (M2 m1 m2)).
- Intro H. Rewrite (MapGet_M2_bit_0_0 a H m m'). Case m. Case m'. Reflexivity.
- Intros a0 y. Simpl. Rewrite (ad_bit_0_0_not_double_plus_un a H a0). Reflexivity.
- Intros m1 m2. Unfold makeM2. Rewrite MapGet_M2_bit_0_0. Reflexivity.
- Assumption.
- Case m'. Intros a0 y. Simpl. Elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))). Intro H0.
- Rewrite H0. Rewrite (ad_eq_complete ? ? H0). Rewrite (ad_div_2_double a H).
- Rewrite (ad_eq_correct a). Reflexivity.
- Intro H0. Rewrite H0. Rewrite (ad_eq_comm (ad_double a0) a).
- Rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0. Rewrite (ad_not_div_2_not_double a a0 H0).
- Reflexivity.
- Intros a0 y0 a1 y1. Unfold makeM2. Rewrite MapGet_M2_bit_0_0. Reflexivity.
- Assumption.
- Intros m1 m2 a0 y. Unfold makeM2. Rewrite MapGet_M2_bit_0_0. Reflexivity.
- Assumption.
- Intros m1 m2. Unfold makeM2. Exact (MapGet_M2_bit_0_0 a H (M2 m1 m2) m').
- Qed.
-
- Fixpoint MapRemove [m:Map] : ad -> Map :=
- Cases m of
- M0 => [_:ad] M0
- | (M1 a y) => [a':ad]
- Cases (ad_eq a a') of
- true => M0
- | false => m
- end
- | (M2 m1 m2) => [a:ad]
- if (ad_bit_0 a)
- then (makeM2 m1 (MapRemove m2 (ad_div_2 a)))
- else (makeM2 (MapRemove m1 (ad_div_2 a)) m2)
- end.
-
- Lemma MapRemove_semantics : (m:Map) (a:ad)
- (eqm (MapGet (MapRemove m a)) [a':ad] if (ad_eq a a') then NONE else (MapGet m a')).
- Proof.
- Unfold eqm. Induction m. Simpl. Intros. Case (ad_eq a a0); Trivial.
- Intros. Simpl. Elim (sumbool_of_bool (ad_eq a1 a2)). Intro H. Rewrite H.
- Elim (sumbool_of_bool (ad_eq a a1)). Intro H0. Rewrite H0. Reflexivity.
- Intro H0. Rewrite H0. Rewrite (ad_eq_complete ? ? H) in H0. Exact (M1_semantics_2 a a2 a0 H0).
- Intro H. Elim (sumbool_of_bool (ad_eq a a1)). Intro H0. Rewrite H0. Rewrite H.
- Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite H. Reflexivity.
- Intro H0. Rewrite H0. Rewrite H. Reflexivity.
- Intros. Change (MapGet (if (ad_bit_0 a)
- then (makeM2 m0 (MapRemove m1 (ad_div_2 a)))
- else (makeM2 (MapRemove m0 (ad_div_2 a)) m1))
- a0)
- =(if (ad_eq a a0) then NONE else (MapGet (M2 m0 m1) a0)).
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H1. Rewrite H1.
- Rewrite (makeM2_M2 m0 (MapRemove m1 (ad_div_2 a)) a0). Elim (sumbool_of_bool (ad_bit_0 a0)).
- Intro H2. Rewrite MapGet_M2_bit_0_1. Rewrite (H0 (ad_div_2 a) (ad_div_2 a0)).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H3. Rewrite H3. Rewrite (ad_div_eq ? ? H3).
- Reflexivity.
- Intro H3. Rewrite H3. Rewrite <- H2 in H1. Rewrite (ad_div_bit_neq ? ? H3 H1).
- Rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). Reflexivity.
- Assumption.
- Intro H2. Rewrite (MapGet_M2_bit_0_0 a0 H2 m0 (MapRemove m1 (ad_div_2 a))).
- Rewrite (ad_eq_comm a a0). Rewrite (ad_bit_0_neq ? ? H2 H1).
- Rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). Reflexivity.
- Intro H1. Rewrite H1. Rewrite (makeM2_M2 (MapRemove m0 (ad_div_2 a)) m1 a0).
- Elim (sumbool_of_bool (ad_bit_0 a0)). Intro H2. Rewrite MapGet_M2_bit_0_1.
- Rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). Rewrite (ad_bit_0_neq a a0 H1 H2). Reflexivity.
- Assumption.
- Intro H2. Rewrite MapGet_M2_bit_0_0. Rewrite (H (ad_div_2 a) (ad_div_2 a0)).
- Rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). Elim (sumbool_of_bool (ad_eq a a0)). Intro H3.
- Rewrite H3. Rewrite (ad_div_eq ? ? H3). Reflexivity.
- Intro H3. Rewrite H3. Rewrite <- H2 in H1. Rewrite (ad_div_bit_neq ? ? H3 H1). Reflexivity.
- Assumption.
- Qed.
-
- Fixpoint MapCard [m:Map] : nat :=
- Cases m of
- M0 => O
- | (M1 _ _) => (S O)
- | (M2 m m') => (plus (MapCard m) (MapCard m'))
- end.
-
- Fixpoint MapMerge [m:Map] : Map -> Map :=
- Cases m of
- M0 => [m':Map] m'
- | (M1 a y) => [m':Map] (MapPut_behind m' a y)
- | (M2 m1 m2) => [m':Map] Cases m' of
- M0 => m
- | (M1 a' y') => (MapPut m a' y')
- | (M2 m'1 m'2) => (M2 (MapMerge m1 m'1)
- (MapMerge m2 m'2))
- end
- end.
-
- Lemma MapMerge_semantics : (m,m':Map)
- (eqm (MapGet (MapMerge m m'))
- [a0:ad] Cases (MapGet m' a0) of
- (SOME y') => (SOME y')
- | NONE => (MapGet m a0)
- end).
- Proof.
- Unfold eqm. Induction m. Intros. Simpl. Case (MapGet m' a); Trivial.
- Intros. Simpl. Rewrite (MapPut_behind_semantics m' a a0 a1). Reflexivity.
- Induction m'. Trivial.
- Intros. Unfold MapMerge. Rewrite (MapPut_semantics (M2 m0 m1) a a0 a1).
- Elim (sumbool_of_bool (ad_eq a a1)). Intro H1. Rewrite H1. Rewrite (ad_eq_complete ? ? H1).
- Rewrite (M1_semantics_1 a1 a0). Reflexivity.
- Intro H1. Rewrite H1. Rewrite (M1_semantics_2 a a1 a0 H1). Reflexivity.
- Intros. Cut (MapMerge (M2 m0 m1) (M2 m2 m3))=(M2 (MapMerge m0 m2) (MapMerge m1 m3)).
- Intro. Rewrite H3. Rewrite MapGet_M2_bit_0_if. Rewrite (H0 m3 (ad_div_2 a)).
- Rewrite (H m2 (ad_div_2 a)). Rewrite (MapGet_M2_bit_0_if m2 m3 a).
- Rewrite (MapGet_M2_bit_0_if m0 m1 a). Case (ad_bit_0 a); Trivial.
- Reflexivity.
- Qed.
-
- (** [MapInter], [MapRngRestrTo], [MapRngRestrBy], [MapInverse]
- not implemented: need a decidable equality on [A]. *)
-
- Fixpoint MapDelta [m:Map] : Map -> Map :=
- Cases m of
- M0 => [m':Map] m'
- | (M1 a y) => [m':Map] Cases (MapGet m' a) of
- NONE => (MapPut m' a y)
- | _ => (MapRemove m' a)
- end
- | (M2 m1 m2) => [m':Map] Cases m' of
- M0 => m
- | (M1 a' y') => Cases (MapGet m a') of
- NONE => (MapPut m a' y')
- | _ => (MapRemove m a')
- end
- | (M2 m'1 m'2) => (makeM2 (MapDelta m1 m'1)
- (MapDelta m2 m'2))
- end
- end.
-
- Lemma MapDelta_semantics_comm : (m,m':Map)
- (eqm (MapGet (MapDelta m m')) (MapGet (MapDelta m' m))).
- Proof.
- Unfold eqm. Induction m. Induction m'; Reflexivity.
- Induction m'. Reflexivity.
- Unfold MapDelta. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H.
- Rewrite <- (ad_eq_complete ? ? H). Rewrite (M1_semantics_1 a a2).
- Rewrite (M1_semantics_1 a a0). Simpl. Rewrite (ad_eq_correct a). Reflexivity.
- Intro H. Rewrite (M1_semantics_2 a a1 a0 H). Rewrite (ad_eq_comm a a1) in H.
- Rewrite (M1_semantics_2 a1 a a2 H). Rewrite (MapPut_semantics (M1 a a0) a1 a2 a3).
- Rewrite (MapPut_semantics (M1 a1 a2) a a0 a3). Elim (sumbool_of_bool (ad_eq a a3)).
- Intro H0. Rewrite H0. Rewrite (ad_eq_complete ? ? H0) in H. Rewrite H.
- Rewrite (ad_eq_complete ? ? H0). Rewrite (M1_semantics_1 a3 a0). Reflexivity.
- Intro H0. Rewrite H0. Rewrite (M1_semantics_2 a a3 a0 H0).
- Elim (sumbool_of_bool (ad_eq a1 a3)). Intro H1. Rewrite H1.
- Rewrite (ad_eq_complete ? ? H1). Exact (M1_semantics_1 a3 a2).
- Intro H1. Rewrite H1. Exact (M1_semantics_2 a1 a3 a2 H1).
- Intros. Reflexivity.
- Induction m'. Reflexivity.
- Reflexivity.
- Intros. Simpl. Rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite (makeM2_M2 (MapDelta m2 m0) (MapDelta m3 m1) a).
- Rewrite (MapGet_M2_bit_0_if (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite (MapGet_M2_bit_0_if (MapDelta m2 m0) (MapDelta m3 m1) a).
- Rewrite (H0 m3 (ad_div_2 a)). Rewrite (H m2 (ad_div_2 a)). Reflexivity.
- Qed.
-
- Lemma MapDelta_semantics_1_1 : (a:ad) (y:A) (m':Map) (a0:ad)
- (MapGet (M1 a y) a0)=NONE -> (MapGet m' a0)=NONE ->
- (MapGet (MapDelta (M1 a y) m') a0)=NONE.
- Proof.
- Intros. Unfold MapDelta. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (M1_semantics_1 a0 y) in H. Discriminate H.
- Intro H1. Case (MapGet m' a). Rewrite (MapPut_semantics m' a y a0). Rewrite H1. Assumption.
- Rewrite (MapRemove_semantics m' a a0). Rewrite H1. Trivial.
- Qed.
-
- Lemma MapDelta_semantics_1 : (m,m':Map) (a:ad)
- (MapGet m a)=NONE -> (MapGet m' a)=NONE ->
- (MapGet (MapDelta m m') a)=NONE.
- Proof.
- Induction m. Trivial.
- Exact MapDelta_semantics_1_1.
- Induction m'. Trivial.
- Intros. Rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- Apply MapDelta_semantics_1_1; Trivial.
- Intros. Simpl. Rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H5. Rewrite H5.
- Apply H0. Rewrite (MapGet_M2_bit_0_1 a H5 m0 m1) in H3. Exact H3.
- Rewrite (MapGet_M2_bit_0_1 a H5 m2 m3) in H4. Exact H4.
- Intro H5. Rewrite H5. Apply H. Rewrite (MapGet_M2_bit_0_0 a H5 m0 m1) in H3. Exact H3.
- Rewrite (MapGet_M2_bit_0_0 a H5 m2 m3) in H4. Exact H4.
- Qed.
-
- Lemma MapDelta_semantics_2_1 : (a:ad) (y:A) (m':Map) (a0:ad) (y0:A)
- (MapGet (M1 a y) a0)=NONE -> (MapGet m' a0)=(SOME y0) ->
- (MapGet (MapDelta (M1 a y) m') a0)=(SOME y0).
- Proof.
- Intros. Unfold MapDelta. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (M1_semantics_1 a0 y) in H. Discriminate H.
- Intro H1. Case (MapGet m' a). Rewrite (MapPut_semantics m' a y a0). Rewrite H1. Assumption.
- Rewrite (MapRemove_semantics m' a a0). Rewrite H1. Trivial.
- Qed.
-
- Lemma MapDelta_semantics_2_2 : (a:ad) (y:A) (m':Map) (a0:ad) (y0:A)
- (MapGet (M1 a y) a0)=(SOME y0) -> (MapGet m' a0)=NONE ->
- (MapGet (MapDelta (M1 a y) m') a0)=(SOME y0).
- Proof.
- Intros. Unfold MapDelta. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (ad_eq_complete ? ? H1).
- Rewrite H0. Rewrite (MapPut_semantics m' a0 y a0). Rewrite (ad_eq_correct a0).
- Rewrite (M1_semantics_1 a0 y) in H. Simple Inversion H. Assumption.
- Intro H1. Rewrite (M1_semantics_2 a a0 y H1) in H. Discriminate H.
- Qed.
-
- Lemma MapDelta_semantics_2 : (m,m':Map) (a:ad) (y:A)
- (MapGet m a)=NONE -> (MapGet m' a)=(SOME y) ->
- (MapGet (MapDelta m m') a)=(SOME y).
- Proof.
- Induction m. Trivial.
- Exact MapDelta_semantics_2_1.
- Induction m'. Intros. Discriminate H2.
- Intros. Rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- Apply MapDelta_semantics_2_2; Assumption.
- Intros. Simpl. Rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H5. Rewrite H5.
- Apply H0. Rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). Assumption.
- Rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). Assumption.
- Intro H5. Rewrite H5. Apply H. Rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). Assumption.
- Rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). Assumption.
- Qed.
-
- Lemma MapDelta_semantics_3_1 : (a0:ad) (y0:A) (m':Map) (a:ad) (y,y':A)
- (MapGet (M1 a0 y0) a)=(SOME y) -> (MapGet m' a)=(SOME y') ->
- (MapGet (MapDelta (M1 a0 y0) m') a)=NONE.
- Proof.
- Intros. Unfold MapDelta. Elim (sumbool_of_bool (ad_eq a0 a)). Intro H1.
- Rewrite (ad_eq_complete a0 a H1). Rewrite H0. Rewrite (MapRemove_semantics m' a a).
- Rewrite (ad_eq_correct a). Reflexivity.
- Intro H1. Rewrite (M1_semantics_2 a0 a y0 H1) in H. Discriminate H.
- Qed.
-
- Lemma MapDelta_semantics_3 : (m,m':Map) (a:ad) (y,y':A)
- (MapGet m a)=(SOME y) -> (MapGet m' a)=(SOME y') ->
- (MapGet (MapDelta m m') a)=NONE.
- Proof.
- Induction m. Intros. Discriminate H.
- Exact MapDelta_semantics_3_1.
- Induction m'. Intros. Discriminate H2.
- Intros. Rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- Exact (MapDelta_semantics_3_1 a a0 (M2 m0 m1) a1 y' y H2 H1).
- Intros. Simpl. Rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H5. Rewrite H5.
- Apply (H0 m3 (ad_div_2 a) y y'). Rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). Assumption.
- Rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). Assumption.
- Intro H5. Rewrite H5. Apply (H m2 (ad_div_2 a) y y').
- Rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). Assumption.
- Rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). Assumption.
- Qed.
-
- Lemma MapDelta_semantics : (m,m':Map)
- (eqm (MapGet (MapDelta m m'))
- [a0:ad] Cases (MapGet m a0) (MapGet m' a0) of
- NONE (SOME y') => (SOME y')
- | (SOME y) NONE => (SOME y)
- | _ _ => NONE
- end).
- Proof.
- Unfold eqm. Intros. Elim (option_sum (MapGet m' a)). Intro H. Elim H. Intros a0 H0.
- Rewrite H0. Elim (option_sum (MapGet m a)). Intro H1. Elim H1. Intros a1 H2. Rewrite H2.
- Exact (MapDelta_semantics_3 m m' a a1 a0 H2 H0).
- Intro H1. Rewrite H1. Exact (MapDelta_semantics_2 m m' a a0 H1 H0).
- Intro H. Rewrite H. Elim (option_sum (MapGet m a)). Intro H0. Elim H0. Intros a0 H1.
- Rewrite H1. Rewrite (MapDelta_semantics_comm m m' a).
- Exact (MapDelta_semantics_2 m' m a a0 H H1).
- Intro H0. Rewrite H0. Exact (MapDelta_semantics_1 m m' a H0 H).
- Qed.
-
- Definition MapEmptyp := [m:Map]
- Cases m of
- M0 => true
- | _ => false
- end.
-
- Lemma MapEmptyp_correct : (MapEmptyp M0)=true.
- Proof.
- Reflexivity.
- Qed.
-
- Lemma MapEmptyp_complete : (m:Map) (MapEmptyp m)=true -> m=M0.
- Proof.
- Induction m; Trivial. Intros. Discriminate H.
- Intros. Discriminate H1.
- Qed.
-
- (** [MapSplit] not implemented: not the preferred way of recursing over Maps
- (use [MapSweep], [MapCollect], or [MapFold] in Mapiter.v. *)
-
-End MapDefs.