summaryrefslogtreecommitdiff
path: root/theories7/IntMap/Addec.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/IntMap/Addec.v')
-rw-r--r--theories7/IntMap/Addec.v179
1 files changed, 0 insertions, 179 deletions
diff --git a/theories7/IntMap/Addec.v b/theories7/IntMap/Addec.v
deleted file mode 100644
index 50dc1480..00000000
--- a/theories7/IntMap/Addec.v
+++ /dev/null
@@ -1,179 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Addec.v,v 1.1.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-(** Equality on adresses *)
-
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-
-Fixpoint ad_eq_1 [p1,p2:positive] : bool :=
- Cases p1 p2 of
- xH xH => true
- | (xO p'1) (xO p'2) => (ad_eq_1 p'1 p'2)
- | (xI p'1) (xI p'2) => (ad_eq_1 p'1 p'2)
- | _ _ => false
- end.
-
-Definition ad_eq := [a,a':ad]
- Cases a a' of
- ad_z ad_z => true
- | (ad_x p) (ad_x p') => (ad_eq_1 p p')
- | _ _ => false
- end.
-
-Lemma ad_eq_correct : (a:ad) (ad_eq a a)=true.
-Proof.
- NewDestruct a; Trivial.
- NewInduction p; Trivial.
-Qed.
-
-Lemma ad_eq_complete : (a,a':ad) (ad_eq a a')=true -> a=a'.
-Proof.
- NewDestruct a. NewDestruct a'; Trivial. NewDestruct p.
- Discriminate 1.
- Discriminate 1.
- Discriminate 1.
- NewDestruct a'. Intros. Discriminate H.
- Unfold ad_eq. Intros. Cut p=p0. Intros. Rewrite H0. Reflexivity.
- Generalize Dependent p0.
- NewInduction p as [p IHp|p IHp|]. NewDestruct p0; Intro H.
- Rewrite (IHp p0). Reflexivity.
- Exact H.
- Discriminate H.
- Discriminate H.
- NewDestruct p0; Intro H. Discriminate H.
- Rewrite (IHp p0 H). Reflexivity.
- Discriminate H.
- NewDestruct p0; Intro H. Discriminate H.
- Discriminate H.
- Trivial.
-Qed.
-
-Lemma ad_eq_comm : (a,a':ad) (ad_eq a a')=(ad_eq a' a).
-Proof.
- Intros. Cut (b,b':bool)(ad_eq a a')=b->(ad_eq a' a)=b'->b=b'.
- Intros. Apply H. Reflexivity.
- Reflexivity.
- NewDestruct b. Intros. Cut a=a'.
- Intro. Rewrite H1 in H0. Rewrite (ad_eq_correct a') in H0. Exact H0.
- Apply ad_eq_complete. Exact H.
- NewDestruct b'. Intros. Cut a'=a.
- Intro. Rewrite H1 in H. Rewrite H1 in H0. Rewrite <- H. Exact H0.
- Apply ad_eq_complete. Exact H0.
- Trivial.
-Qed.
-
-Lemma ad_xor_eq_true : (a,a':ad) (ad_xor a a')=ad_z -> (ad_eq a a')=true.
-Proof.
- Intros. Rewrite (ad_xor_eq a a' H). Apply ad_eq_correct.
-Qed.
-
-Lemma ad_xor_eq_false :
- (a,a':ad) (p:positive) (ad_xor a a')=(ad_x p) -> (ad_eq a a')=false.
-Proof.
- Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H0.
- Rewrite (ad_eq_complete a a' H0) in H. Rewrite (ad_xor_nilpotent a') in H. Discriminate H.
- Trivial.
-Qed.
-
-Lemma ad_bit_0_1_not_double : (a:ad) (ad_bit_0 a)=true ->
- (a0:ad) (ad_eq (ad_double a0) a)=false.
-Proof.
- Intros. Elim (sumbool_of_bool (ad_eq (ad_double a0) a)). Intro H0.
- Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_bit_0 a0) in H. Discriminate H.
- Trivial.
-Qed.
-
-Lemma ad_not_div_2_not_double : (a,a0:ad) (ad_eq (ad_div_2 a) a0)=false ->
- (ad_eq a (ad_double a0))=false.
-Proof.
- Intros. Elim (sumbool_of_bool (ad_eq (ad_double a0) a)). Intro H0.
- Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_div_2 a0) in H.
- Rewrite (ad_eq_correct a0) in H. Discriminate H.
- Intro. Rewrite ad_eq_comm. Assumption.
-Qed.
-
-Lemma ad_bit_0_0_not_double_plus_un : (a:ad) (ad_bit_0 a)=false ->
- (a0:ad) (ad_eq (ad_double_plus_un a0) a)=false.
-Proof.
- Intros. Elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). Intro H0.
- Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_plus_un_bit_0 a0) in H.
- Discriminate H.
- Trivial.
-Qed.
-
-Lemma ad_not_div_2_not_double_plus_un : (a,a0:ad) (ad_eq (ad_div_2 a) a0)=false ->
- (ad_eq (ad_double_plus_un a0) a)=false.
-Proof.
- Intros. Elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). Intro H0.
- Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_plus_un_div_2 a0) in H.
- Rewrite (ad_eq_correct a0) in H. Discriminate H.
- Intro H0. Rewrite ad_eq_comm. Assumption.
-Qed.
-
-Lemma ad_bit_0_neq :
- (a,a':ad) (ad_bit_0 a)=false -> (ad_bit_0 a')=true -> (ad_eq a a')=false.
-Proof.
- Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H1. Rewrite (ad_eq_complete ? ? H1) in H.
- Rewrite H in H0. Discriminate H0.
- Trivial.
-Qed.
-
-Lemma ad_div_eq :
- (a,a':ad) (ad_eq a a')=true -> (ad_eq (ad_div_2 a) (ad_div_2 a'))=true.
-Proof.
- Intros. Cut a=a'. Intros. Rewrite H0. Apply ad_eq_correct.
- Apply ad_eq_complete. Exact H.
-Qed.
-
-Lemma ad_div_neq : (a,a':ad) (ad_eq (ad_div_2 a) (ad_div_2 a'))=false ->
- (ad_eq a a')=false.
-Proof.
- Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H0.
- Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_eq_correct (ad_div_2 a')) in H. Discriminate H.
- Trivial.
-Qed.
-
-Lemma ad_div_bit_eq : (a,a':ad) (ad_bit_0 a)=(ad_bit_0 a') ->
- (ad_div_2 a)=(ad_div_2 a') -> a=a'.
-Proof.
- Intros. Apply ad_faithful. Unfold eqf. NewDestruct n.
- Rewrite ad_bit_0_correct. Rewrite ad_bit_0_correct. Assumption.
- Rewrite <- ad_div_2_correct. Rewrite <- ad_div_2_correct.
- Rewrite H0. Reflexivity.
-Qed.
-
-Lemma ad_div_bit_neq : (a,a':ad) (ad_eq a a')=false -> (ad_bit_0 a)=(ad_bit_0 a') ->
- (ad_eq (ad_div_2 a) (ad_div_2 a'))=false.
-Proof.
- Intros. Elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). Intro H1.
- Rewrite (ad_div_bit_eq ? ? H0 (ad_eq_complete ? ? H1)) in H.
- Rewrite (ad_eq_correct a') in H. Discriminate H.
- Trivial.
-Qed.
-
-Lemma ad_neq : (a,a':ad) (ad_eq a a')=false ->
- (ad_bit_0 a)=(negb (ad_bit_0 a')) \/ (ad_eq (ad_div_2 a) (ad_div_2 a'))=false.
-Proof.
- Intros. Cut (ad_bit_0 a)=(ad_bit_0 a')\/(ad_bit_0 a)=(negb (ad_bit_0 a')).
- Intros. Elim H0. Intro. Right . Apply ad_div_bit_neq. Assumption.
- Assumption.
- Intro. Left . Assumption.
- Case (ad_bit_0 a); Case (ad_bit_0 a'); Auto.
-Qed.
-
-Lemma ad_double_or_double_plus_un : (a:ad)
- {a0:ad | a=(ad_double a0)}+{a1:ad | a=(ad_double_plus_un a1)}.
-Proof.
- Intro. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H. Right . Split with (ad_div_2 a).
- Rewrite (ad_div_2_double_plus_un a H). Reflexivity.
- Intro H. Left . Split with (ad_div_2 a). Rewrite (ad_div_2_double a H). Reflexivity.
-Qed.