summaryrefslogtreecommitdiff
path: root/theories7/Init
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Init')
-rwxr-xr-xtheories7/Init/Datatypes.v125
-rwxr-xr-xtheories7/Init/Logic.v306
-rwxr-xr-xtheories7/Init/Logic_Type.v304
-rw-r--r--theories7/Init/Notations.v94
-rwxr-xr-xtheories7/Init/Peano.v218
-rwxr-xr-xtheories7/Init/Prelude.v16
-rwxr-xr-xtheories7/Init/Specif.v204
-rwxr-xr-xtheories7/Init/Wf.v158
8 files changed, 0 insertions, 1425 deletions
diff --git a/theories7/Init/Datatypes.v b/theories7/Init/Datatypes.v
deleted file mode 100755
index 006ec08e..00000000
--- a/theories7/Init/Datatypes.v
+++ /dev/null
@@ -1,125 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Datatypes.v,v 1.3.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-Require Notations.
-Require Logic.
-
-Set Implicit Arguments.
-V7only [Unset Implicit Arguments.].
-
-(** [unit] is a singleton datatype with sole inhabitant [tt] *)
-
-Inductive unit : Set := tt : unit.
-
-(** [bool] is the datatype of the booleans values [true] and [false] *)
-
-Inductive bool : Set := true : bool
- | false : bool.
-
-Add Printing If bool.
-
-(** [nat] is the datatype of natural numbers built from [O] and successor [S];
- note that zero is the letter O, not the numeral 0 *)
-
-Inductive nat : Set := O : nat
- | S : nat->nat.
-
-Delimits Scope nat_scope with nat.
-Bind Scope nat_scope with nat.
-Arguments Scope S [ nat_scope ].
-
-(** [Empty_set] has no inhabitant *)
-
-Inductive Empty_set:Set :=.
-
-(** [identity A a] is the family of datatypes on [A] whose sole non-empty
- member is the singleton datatype [identity A a a] whose
- sole inhabitant is denoted [refl_identity A a] *)
-
-Inductive identity [A:Type; a:A] : A->Set :=
- refl_identity: (identity A a a).
-Hints Resolve refl_identity : core v62.
-
-Implicits identity_ind [1].
-Implicits identity_rec [1].
-Implicits identity_rect [1].
-V7only [
-Implicits identity_ind [].
-Implicits identity_rec [].
-Implicits identity_rect [].
-].
-
-(** [option A] is the extension of A with a dummy element None *)
-
-Inductive option [A:Set] : Set := Some : A -> (option A) | None : (option A).
-
-Implicits None [1].
-V7only [Implicits None [].].
-
-(** [sum A B], equivalently [A + B], is the disjoint sum of [A] and [B] *)
-(* Syntax defined in Specif.v *)
-Inductive sum [A,B:Set] : Set
- := inl : A -> (sum A B)
- | inr : B -> (sum A B).
-
-Notation "x + y" := (sum x y) : type_scope.
-
-(** [prod A B], written [A * B], is the product of [A] and [B];
- the pair [pair A B a b] of [a] and [b] is abbreviated [(a,b)] *)
-
-Inductive prod [A,B:Set] : Set := pair : A -> B -> (prod A B).
-Add Printing Let prod.
-
-Notation "x * y" := (prod x y) : type_scope.
-V7only [Notation "( x , y )" := (pair ? ? x y) : core_scope.].
-V8Notation "( x , y , .. , z )" := (pair ? ? .. (pair ? ? x y) .. z) : core_scope.
-
-Section projections.
- Variables A,B:Set.
- Definition fst := [p:(prod A B)]Cases p of (pair x y) => x end.
- Definition snd := [p:(prod A B)]Cases p of (pair x y) => y end.
-End projections.
-
-V7only [
-Notation Fst := (fst ? ?).
-Notation Snd := (snd ? ?).
-].
-Hints Resolve pair inl inr : core v62.
-
-Lemma surjective_pairing : (A,B:Set;p:A*B)p=(pair A B (Fst p) (Snd p)).
-Proof.
-NewDestruct p; Reflexivity.
-Qed.
-
-Lemma injective_projections :
- (A,B:Set;p1,p2:A*B)(Fst p1)=(Fst p2)->(Snd p1)=(Snd p2)->p1=p2.
-Proof.
-NewDestruct p1; NewDestruct p2; Simpl; Intros Hfst Hsnd.
-Rewrite Hfst; Rewrite Hsnd; Reflexivity.
-Qed.
-
-V7only[
-(** Parsing only of things in [Datatypes.v] *)
-Notation "< A , B > ( x , y )" := (pair A B x y) (at level 1, only parsing, A annot).
-Notation "< A , B > 'Fst' ( p )" := (fst A B p) (at level 1, only parsing, A annot).
-Notation "< A , B > 'Snd' ( p )" := (snd A B p) (at level 1, only parsing, A annot).
-].
-
-(** Comparison *)
-
-Inductive relation : Set :=
- EGAL :relation | INFERIEUR : relation | SUPERIEUR : relation.
-
-Definition Op := [r:relation]
- Cases r of
- EGAL => EGAL
- | INFERIEUR => SUPERIEUR
- | SUPERIEUR => INFERIEUR
- end.
diff --git a/theories7/Init/Logic.v b/theories7/Init/Logic.v
deleted file mode 100755
index 6ba9c7a1..00000000
--- a/theories7/Init/Logic.v
+++ /dev/null
@@ -1,306 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Logic.v,v 1.6.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-Set Implicit Arguments.
-V7only [Unset Implicit Arguments.].
-
-Require Notations.
-
-(** [True] is the always true proposition *)
-Inductive True : Prop := I : True.
-
-(** [False] is the always false proposition *)
-Inductive False : Prop := .
-
-(** [not A], written [~A], is the negation of [A] *)
-Definition not := [A:Prop]A->False.
-
-Notation "~ x" := (not x) : type_scope.
-
-Hints Unfold not : core.
-
-Inductive and [A,B:Prop] : Prop := conj : A -> B -> A /\ B
-
-where "A /\ B" := (and A B) : type_scope.
-
-V7only[
-Notation "< P , Q > { p , q }" := (conj P Q p q) (P annot, at level 1).
-].
-
-Section Conjunction.
-
- (** [and A B], written [A /\ B], is the conjunction of [A] and [B]
-
- [conj A B p q], written [<p,q>] is a proof of [A /\ B] as soon as
- [p] is a proof of [A] and [q] a proof of [B]
-
- [proj1] and [proj2] are first and second projections of a conjunction *)
-
- Variables A,B : Prop.
-
- Theorem proj1 : (and A B) -> A.
- Proof.
- NewDestruct 1; Trivial.
- Qed.
-
- Theorem proj2 : (and A B) -> B.
- Proof.
- NewDestruct 1; Trivial.
- Qed.
-
-End Conjunction.
-
-(** [or A B], written [A \/ B], is the disjunction of [A] and [B] *)
-
-Inductive or [A,B:Prop] : Prop :=
- or_introl : A -> A \/ B
- | or_intror : B -> A \/ B
-
-where "A \/ B" := (or A B) : type_scope.
-
-(** [iff A B], written [A <-> B], expresses the equivalence of [A] and [B] *)
-
-Definition iff := [A,B:Prop] (and (A->B) (B->A)).
-
-Notation "A <-> B" := (iff A B) : type_scope.
-
-Section Equivalence.
-
-Theorem iff_refl : (A:Prop) (iff A A).
- Proof.
- Split; Auto.
- Qed.
-
-Theorem iff_trans : (a,b,c:Prop) (iff a b) -> (iff b c) -> (iff a c).
- Proof.
- Intros A B C (H1,H2) (H3,H4); Split; Auto.
- Qed.
-
-Theorem iff_sym : (A,B:Prop) (iff A B) -> (iff B A).
- Proof.
- Intros A B (H1,H2); Split; Auto.
- Qed.
-
-End Equivalence.
-
-(** [(IF P Q R)], or more suggestively [(either P and_then Q or_else R)],
- denotes either [P] and [Q], or [~P] and [Q] *)
-Definition IF_then_else := [P,Q,R:Prop] (or (and P Q) (and (not P) R)).
-V7only [Notation IF:=IF_then_else.].
-
-Notation "'IF' c1 'then' c2 'else' c3" := (IF c1 c2 c3)
- (at level 1, c1, c2, c3 at level 8) : type_scope
- V8only (at level 200).
-
-(** First-order quantifiers *)
-
- (** [ex A P], or simply [exists x, P x], expresses the existence of an
- [x] of type [A] which satisfies the predicate [P] ([A] is of type
- [Set]). This is existential quantification. *)
-
- (** [ex2 A P Q], or simply [exists2 x, P x & Q x], expresses the
- existence of an [x] of type [A] which satisfies both the predicates
- [P] and [Q] *)
-
- (** Universal quantification (especially first-order one) is normally
- written [forall x:A, P x]. For duality with existential quantification,
- the construction [all P] is provided too *)
-
-Inductive ex [A:Type;P:A->Prop] : Prop
- := ex_intro : (x:A)(P x)->(ex A P).
-
-Inductive ex2 [A:Type;P,Q:A->Prop] : Prop
- := ex_intro2 : (x:A)(P x)->(Q x)->(ex2 A P Q).
-
-Definition all := [A:Type][P:A->Prop](x:A)(P x).
-
-(* Rule order is important to give printing priority to fully typed exists *)
-
-V7only [ Notation Ex := (ex ?). ].
-Notation "'EX' x | p" := (ex ? [x]p)
- (at level 10, p at level 8) : type_scope
- V8only "'exists' x , p" (at level 200, x ident, p at level 99).
-Notation "'EX' x : t | p" := (ex ? [x:t]p)
- (at level 10, p at level 8) : type_scope
- V8only "'exists' x : t , p" (at level 200, x ident, p at level 99, format
- "'exists' '/ ' x : t , '/ ' p").
-
-V7only [ Notation Ex2 := (ex2 ?). ].
-Notation "'EX' x | p & q" := (ex2 ? [x]p [x]q)
- (at level 10, p, q at level 8) : type_scope
- V8only "'exists2' x , p & q" (at level 200, x ident, p, q at level 99).
-Notation "'EX' x : t | p & q" := (ex2 ? [x:t]p [x:t]q)
- (at level 10, p, q at level 8) : type_scope
- V8only "'exists2' x : t , p & q"
- (at level 200, x ident, t at level 200, p, q at level 99, format
- "'exists2' '/ ' x : t , '/ ' '[' p & '/' q ']'").
-
-V7only [Notation All := (all ?).
-Notation "'ALL' x | p" := (all ? [x]p)
- (at level 10, p at level 8) : type_scope
- V8only (at level 200, x ident, p at level 200).
-Notation "'ALL' x : t | p" := (all ? [x:t]p)
- (at level 10, p at level 8) : type_scope
- V8only (at level 200, x ident, t, p at level 200).
-].
-
-(** Universal quantification *)
-
-Section universal_quantification.
-
- Variable A : Type.
- Variable P : A->Prop.
-
- Theorem inst : (x:A)(all ? [x](P x))->(P x).
- Proof.
- Unfold all; Auto.
- Qed.
-
- Theorem gen : (B:Prop)(f:(y:A)B->(P y))B->(all A P).
- Proof.
- Red; Auto.
- Qed.
-
- End universal_quantification.
-
-(** Equality *)
-
-(** [eq A x y], or simply [x=y], expresses the (Leibniz') equality
- of [x] and [y]. Both [x] and [y] must belong to the same type [A].
- The definition is inductive and states the reflexivity of the equality.
- The others properties (symmetry, transitivity, replacement of
- equals) are proved below *)
-
-Inductive eq [A:Type;x:A] : A->Prop
- := refl_equal : x = x :> A
-
-where "x = y :> A" := (!eq A x y) : type_scope.
-
-Notation "x = y" := (eq ? x y) : type_scope.
-Notation "x <> y :> T" := ~ (!eq T x y) : type_scope.
-Notation "x <> y" := ~ x=y : type_scope.
-
-Implicits eq_ind [1].
-Implicits eq_rec [1].
-Implicits eq_rect [1].
-V7only [
-Implicits eq_ind [].
-Implicits eq_rec [].
-Implicits eq_rect [].
-].
-
-Hints Resolve I conj or_introl or_intror refl_equal : core v62.
-Hints Resolve ex_intro ex_intro2 : core v62.
-
-Section Logic_lemmas.
-
- Theorem absurd : (A:Prop)(C:Prop) A -> (not A) -> C.
- Proof.
- Unfold not; Intros A C h1 h2.
- NewDestruct (h2 h1).
- Qed.
-
- Section equality.
- Variable A,B : Type.
- Variable f : A->B.
- Variable x,y,z : A.
-
- Theorem sym_eq : (eq ? x y) -> (eq ? y x).
- Proof.
- NewDestruct 1; Trivial.
- Defined.
- Opaque sym_eq.
-
- Theorem trans_eq : (eq ? x y) -> (eq ? y z) -> (eq ? x z).
- Proof.
- NewDestruct 2; Trivial.
- Defined.
- Opaque trans_eq.
-
- Theorem f_equal : (eq ? x y) -> (eq ? (f x) (f y)).
- Proof.
- NewDestruct 1; Trivial.
- Defined.
- Opaque f_equal.
-
- Theorem sym_not_eq : (not (eq ? x y)) -> (not (eq ? y x)).
- Proof.
- Red; Intros h1 h2; Apply h1; NewDestruct h2; Trivial.
- Qed.
-
- Definition sym_equal := sym_eq.
- Definition sym_not_equal := sym_not_eq.
- Definition trans_equal := trans_eq.
-
- End equality.
-
-(* Is now a primitive principle
- Theorem eq_rect: (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? x y)->(P y).
- Proof.
- Intros.
- Cut (identity A x y).
- NewDestruct 1; Auto.
- NewDestruct H; Auto.
- Qed.
-*)
-
- Definition eq_ind_r : (A:Type)(x:A)(P:A->Prop)(P x)->(y:A)(eq ? y x)->(P y).
- Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption.
- Defined.
-
- Definition eq_rec_r : (A:Type)(x:A)(P:A->Set)(P x)->(y:A)(eq ? y x)->(P y).
- Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption.
- Defined.
-
- Definition eq_rect_r : (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? y x)->(P y).
- Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption.
- Defined.
-End Logic_lemmas.
-
-Theorem f_equal2 : (A1,A2,B:Type)(f:A1->A2->B)(x1,y1:A1)(x2,y2:A2)
- (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? (f x1 x2) (f y1 y2)).
-Proof.
- NewDestruct 1; NewDestruct 1; Reflexivity.
-Qed.
-
-Theorem f_equal3 : (A1,A2,A3,B:Type)(f:A1->A2->A3->B)(x1,y1:A1)(x2,y2:A2)
- (x3,y3:A3)(eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3)
- -> (eq ? (f x1 x2 x3) (f y1 y2 y3)).
-Proof.
- NewDestruct 1; NewDestruct 1; NewDestruct 1; Reflexivity.
-Qed.
-
-Theorem f_equal4 : (A1,A2,A3,A4,B:Type)(f:A1->A2->A3->A4->B)
- (x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4)
- (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4)
- -> (eq ? (f x1 x2 x3 x4) (f y1 y2 y3 y4)).
-Proof.
- NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1; Reflexivity.
-Qed.
-
-Theorem f_equal5 : (A1,A2,A3,A4,A5,B:Type)(f:A1->A2->A3->A4->A5->B)
- (x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4)(x5,y5:A5)
- (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4) -> (eq ? x5 y5)
- -> (eq ? (f x1 x2 x3 x4 x5) (f y1 y2 y3 y4 y5)).
-Proof.
- NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1;
- Reflexivity.
-Qed.
-
-Hints Immediate sym_eq sym_not_eq : core v62.
-
-V7only[
-(** Parsing only of things in [Logic.v] *)
-Notation "< A > 'All' ( P )" :=(all A P) (A annot, at level 1, only parsing).
-Notation "< A > x = y" := (eq A x y)
- (A annot, at level 1, x at level 0, only parsing).
-Notation "< A > x <> y" := ~(eq A x y)
- (A annot, at level 1, x at level 0, only parsing).
-].
diff --git a/theories7/Init/Logic_Type.v b/theories7/Init/Logic_Type.v
deleted file mode 100755
index 793b671c..00000000
--- a/theories7/Init/Logic_Type.v
+++ /dev/null
@@ -1,304 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Logic_Type.v,v 1.3.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-Set Implicit Arguments.
-V7only [Unset Implicit Arguments.].
-
-(** This module defines quantification on the world [Type]
- ([Logic.v] was defining it on the world [Set]) *)
-
-Require Datatypes.
-Require Export Logic.
-
-V7only [
-(*
-(** [allT A P], or simply [(ALLT x | P(x))], stands for [(x:A)(P x)]
- when [A] is of type [Type] *)
-
-Definition allT := [A:Type][P:A->Prop](x:A)(P x).
-*)
-
-Notation allT := all (only parsing).
-Notation inst := Logic.inst (only parsing).
-Notation gen := Logic.gen (only parsing).
-
-(* Order is important to give printing priority to fully typed ALL and EX *)
-
-Notation AllT := (all ?).
-Notation "'ALLT' x | p" := (all ? [x]p) (at level 10, p at level 8).
-Notation "'ALLT' x : t | p" := (all ? [x:t]p) (at level 10, p at level 8).
-
-(*
-Section universal_quantification.
-
-Variable A : Type.
-Variable P : A->Prop.
-
-Theorem inst : (x:A)(allT ? [x](P x))->(P x).
-Proof.
-Unfold all; Auto.
-Qed.
-
-Theorem gen : (B:Prop)(f:(y:A)B->(P y))B->(allT A P).
-Proof.
-Red; Auto.
-Qed.
-
-End universal_quantification.
-*)
-
-(*
-(** * Existential Quantification *)
-
-(** [exT A P], or simply [(EXT x | P(x))], stands for the existential
- quantification on the predicate [P] when [A] is of type [Type] *)
-
-(** [exT2 A P Q], or simply [(EXT x | P(x) & Q(x))], stands for the
- existential quantification on both [P] and [Q] when [A] is of
- type [Type] *)
-Inductive exT [A:Type;P:A->Prop] : Prop
- := exT_intro : (x:A)(P x)->(exT A P).
-*)
-
-Notation exT := ex (only parsing).
-Notation exT_intro := ex_intro (only parsing).
-Notation exT_ind := ex_ind (only parsing).
-
-Notation ExT := (ex ?).
-Notation "'EXT' x | p" := (ex ? [x]p)
- (at level 10, p at level 8, only parsing).
-Notation "'EXT' x : t | p" := (ex ? [x:t]p)
- (at level 10, p at level 8, only parsing).
-
-(*
-Inductive exT2 [A:Type;P,Q:A->Prop] : Prop
- := exT_intro2 : (x:A)(P x)->(Q x)->(exT2 A P Q).
-*)
-
-Notation exT2 := ex2 (only parsing).
-Notation exT_intro2 := ex_intro2 (only parsing).
-Notation exT2_ind := ex2_ind (only parsing).
-
-Notation ExT2 := (ex2 ?).
-Notation "'EXT' x | p & q" := (ex2 ? [x]p [x]q)
- (at level 10, p, q at level 8).
-Notation "'EXT' x : t | p & q" := (ex2 ? [x:t]p [x:t]q)
- (at level 10, p, q at level 8).
-
-(*
-(** Leibniz equality : [A:Type][x,y:A] (P:A->Prop)(P x)->(P y)
-
- [eqT A x y], or simply [x==y], is Leibniz' equality when [A] is of
- type [Type]. This equality satisfies reflexivity (by definition),
- symmetry, transitivity and stability by congruence *)
-
-
-Inductive eqT [A:Type;x:A] : A -> Prop
- := refl_eqT : (eqT A x x).
-
-Hints Resolve refl_eqT (* exT_intro2 exT_intro *) : core v62.
-*)
-
-Notation eqT := eq (only parsing).
-Notation refl_eqT := refl_equal (only parsing).
-Notation eqT_ind := eq_ind (only parsing).
-Notation eqT_rect := eq_rect (only parsing).
-Notation eqT_rec := eq_rec (only parsing).
-
-Notation "x == y" := (eq ? x y) (at level 5, no associativity, only parsing).
-
-(** Parsing only of things in [Logic_type.v] *)
-
-Notation "< A > x == y" := (eq A x y)
- (A annot, at level 1, x at level 0, only parsing).
-
-(*
-Section Equality_is_a_congruence.
-
- Variables A,B : Type.
- Variable f : A->B.
-
- Variable x,y,z : A.
-
- Lemma sym_eqT : (eqT ? x y) -> (eqT ? y x).
- Proof.
- NewDestruct 1; Trivial.
- Qed.
-
- Lemma trans_eqT : (eqT ? x y) -> (eqT ? y z) -> (eqT ? x z).
- Proof.
- NewDestruct 2; Trivial.
- Qed.
-
- Lemma congr_eqT : (eqT ? x y)->(eqT ? (f x) (f y)).
- Proof.
- NewDestruct 1; Trivial.
- Qed.
-
- Lemma sym_not_eqT : ~(eqT ? x y) -> ~(eqT ? y x).
- Proof.
- Red; Intros H H'; Apply H; NewDestruct H'; Trivial.
- Qed.
-
-End Equality_is_a_congruence.
-*)
-
-Notation sym_eqT := sym_eq (only parsing).
-Notation trans_eqT := trans_eq (only parsing).
-Notation congr_eqT := f_equal (only parsing).
-Notation sym_not_eqT := sym_not_eq (only parsing).
-
-(*
-Hints Immediate sym_eqT sym_not_eqT : core v62.
-*)
-
-(** This states the replacement of equals by equals *)
-
-(*
-Definition eqT_ind_r : (A:Type)(x:A)(P:A->Prop)(P x)->(y:A)(eqT ? y x)->(P y).
-Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial.
-Defined.
-
-Definition eqT_rec_r : (A:Type)(x:A)(P:A->Set)(P x)->(y:A)(eqT ? y x)->(P y).
-Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial.
-Defined.
-
-Definition eqT_rect_r : (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eqT ? y x)->(P y).
-Intros A x P H y H0; Case sym_eqT with 1:=H0; Trivial.
-Defined.
-*)
-
-Notation eqT_ind_r := eq_ind_r (only parsing).
-Notation eqT_rec_r := eq_rec_r (only parsing).
-Notation eqT_rect_r := eq_rect_r (only parsing).
-
-(** Some datatypes at the [Type] level *)
-(*
-Inductive EmptyT: Type :=.
-Inductive UnitT : Type := IT : UnitT.
-*)
-
-Notation EmptyT := False (only parsing).
-Notation UnitT := unit (only parsing).
-Notation IT := tt.
-].
-Definition notT := [A:Type] A->EmptyT.
-
-V7only [
-(** Have you an idea of what means [identityT A a b]? No matter! *)
-
-(*
-Inductive identityT [A:Type; a:A] : A -> Type :=
- refl_identityT : (identityT A a a).
-*)
-
-Notation identityT := identity (only parsing).
-Notation refl_identityT := refl_identity (only parsing).
-
-Notation "< A > x === y" := (!identityT A x y)
- (A annot, at level 1, x at level 0, only parsing) : type_scope.
-
-Notation "x === y" := (identityT ? x y)
- (at level 5, no associativity, only parsing) : type_scope.
-
-(*
-Hints Resolve refl_identityT : core v62.
-*)
-].
-Section identity_is_a_congruence.
-
- Variables A,B : Type.
- Variable f : A->B.
-
- Variable x,y,z : A.
-
- Lemma sym_id : (identityT ? x y) -> (identityT ? y x).
- Proof.
- NewDestruct 1; Trivial.
- Qed.
-
- Lemma trans_id : (identityT ? x y) -> (identityT ? y z) -> (identityT ? x z).
- Proof.
- NewDestruct 2; Trivial.
- Qed.
-
- Lemma congr_id : (identityT ? x y)->(identityT ? (f x) (f y)).
- Proof.
- NewDestruct 1; Trivial.
- Qed.
-
- Lemma sym_not_id : (notT (identityT ? x y)) -> (notT (identityT ? y x)).
- Proof.
- Red; Intros H H'; Apply H; NewDestruct H'; Trivial.
- Qed.
-
-End identity_is_a_congruence.
-
-Definition identity_ind_r :
- (A:Type)
- (a:A)
- (P:A->Prop)
- (P a)->(y:A)(identityT ? y a)->(P y).
- Intros A x P H y H0; Case sym_id with 1:= H0; Trivial.
-Defined.
-
-Definition identity_rec_r :
- (A:Type)
- (a:A)
- (P:A->Set)
- (P a)->(y:A)(identityT ? y a)->(P y).
- Intros A x P H y H0; Case sym_id with 1:= H0; Trivial.
-Defined.
-
-Definition identity_rect_r :
- (A:Type)
- (a:A)
- (P:A->Type)
- (P a)->(y:A)(identityT ? y a)->(P y).
- Intros A x P H y H0; Case sym_id with 1:= H0; Trivial.
-Defined.
-
-V7only [
-Notation sym_idT := sym_id (only parsing).
-Notation trans_idT := trans_id (only parsing).
-Notation congr_idT := congr_id (only parsing).
-Notation sym_not_idT := sym_not_id (only parsing).
-Notation identityT_ind_r := identity_ind_r (only parsing).
-Notation identityT_rec_r := identity_rec_r (only parsing).
-Notation identityT_rect_r := identity_rect_r (only parsing).
-].
-Inductive prodT [A,B:Type] : Type := pairT : A -> B -> (prodT A B).
-
-Section prodT_proj.
-
- Variables A, B : Type.
-
- Definition fstT := [H:(prodT A B)]Cases H of (pairT x _) => x end.
- Definition sndT := [H:(prodT A B)]Cases H of (pairT _ y) => y end.
-
-End prodT_proj.
-
-Definition prodT_uncurry : (A,B,C:Type)((prodT A B)->C)->A->B->C :=
- [A,B,C:Type; f:((prodT A B)->C); x:A; y:B]
- (f (pairT A B x y)).
-
-Definition prodT_curry : (A,B,C:Type)(A->B->C)->(prodT A B)->C :=
- [A,B,C:Type; f:(A->B->C); p:(prodT A B)]
- Cases p of
- | (pairT x y) => (f x y)
- end.
-
-Hints Immediate sym_id sym_not_id : core v62.
-
-V7only [
-Implicits fstT [1 2].
-Implicits sndT [1 2].
-Implicits pairT [1 2].
-].
diff --git a/theories7/Init/Notations.v b/theories7/Init/Notations.v
deleted file mode 100644
index 34bfcbfa..00000000
--- a/theories7/Init/Notations.v
+++ /dev/null
@@ -1,94 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Notations.v,v 1.5.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-(** These are the notations whose level and associativity is imposed by Coq *)
-
-(** Notations for logical connectives *)
-
-Uninterpreted Notation "x <-> y" (at level 8, right associativity)
- V8only (at level 95, no associativity).
-Uninterpreted Notation "x /\ y" (at level 6, right associativity)
- V8only (at level 80, right associativity).
-Uninterpreted Notation "x \/ y" (at level 7, right associativity)
- V8only (at level 85, right associativity).
-Uninterpreted Notation "~ x" (at level 5, right associativity)
- V8only (at level 75, right associativity).
-
-(** Notations for equality and inequalities *)
-
-Uninterpreted Notation "x = y :> T"
- (at level 5, y at next level, no associativity).
-Uninterpreted Notation "x = y"
- (at level 5, no associativity).
-Uninterpreted Notation "x = y = z"
- (at level 5, no associativity, y at next level).
-
-Uninterpreted Notation "x <> y :> T"
- (at level 5, y at next level, no associativity).
-Uninterpreted Notation "x <> y"
- (at level 5, no associativity).
-
-Uninterpreted V8Notation "x <= y" (at level 70, no associativity).
-Uninterpreted V8Notation "x < y" (at level 70, no associativity).
-Uninterpreted V8Notation "x >= y" (at level 70, no associativity).
-Uninterpreted V8Notation "x > y" (at level 70, no associativity).
-
-Uninterpreted V8Notation "x <= y <= z" (at level 70, y at next level).
-Uninterpreted V8Notation "x <= y < z" (at level 70, y at next level).
-Uninterpreted V8Notation "x < y < z" (at level 70, y at next level).
-Uninterpreted V8Notation "x < y <= z" (at level 70, y at next level).
-
-(** Arithmetical notations (also used for type constructors) *)
-
-Uninterpreted Notation "x + y" (at level 4, left associativity).
-Uninterpreted V8Notation "x - y" (at level 50, left associativity).
-Uninterpreted Notation "x * y" (at level 3, right associativity)
- V8only (at level 40, left associativity).
-Uninterpreted V8Notation "x / y" (at level 40, left associativity).
-Uninterpreted V8Notation "- x" (at level 35, right associativity).
-Uninterpreted V8Notation "/ x" (at level 35, right associativity).
-Uninterpreted V8Notation "x ^ y" (at level 30, right associativity).
-
-(** Notations for pairs *)
-
-V7only [Uninterpreted Notation "( x , y )" (at level 0) V8only.].
-Uninterpreted V8Notation "( x , y , .. , z )" (at level 0).
-
-(** Notation "{ x }" is reserved and has a special status as component
- of other notations; it is at level 1 to factor with {x:A|P} etc *)
-
-Uninterpreted Notation "{ x }" (at level 1)
- V8only (at level 0, x at level 99).
-
-(** Notations for sum-types *)
-
-Uninterpreted Notation "{ A } + { B }" (at level 4, left associativity)
- V8only (at level 50, left associativity).
-
-Uninterpreted Notation "A + { B }" (at level 4, left associativity)
- V8only (at level 50, left associativity).
-
-(** Notations for sigma-types or subsets *)
-
-Uninterpreted Notation "{ x : A | P }" (at level 1)
- V8only (at level 0, x at level 99).
-Uninterpreted Notation "{ x : A | P & Q }" (at level 1)
- V8only (at level 0, x at level 99).
-
-Uninterpreted Notation "{ x : A & P }" (at level 1)
- V8only (at level 0, x at level 99).
-Uninterpreted Notation "{ x : A & P & Q }" (at level 1)
- V8only (at level 0, x at level 99).
-
-Delimits Scope type_scope with type.
-Delimits Scope core_scope with core.
-
-Open Scope core_scope.
-Open Scope type_scope.
diff --git a/theories7/Init/Peano.v b/theories7/Init/Peano.v
deleted file mode 100755
index 72d19399..00000000
--- a/theories7/Init/Peano.v
+++ /dev/null
@@ -1,218 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Peano.v,v 1.1.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-(** Natural numbers [nat] built from [O] and [S] are defined in Datatypes.v *)
-
-(** This module defines the following operations on natural numbers :
- - predecessor [pred]
- - addition [plus]
- - multiplication [mult]
- - less or equal order [le]
- - less [lt]
- - greater or equal [ge]
- - greater [gt]
-
- This module states various lemmas and theorems about natural numbers,
- including Peano's axioms of arithmetic (in Coq, these are in fact provable)
- Case analysis on [nat] and induction on [nat * nat] are provided too *)
-
-Require Notations.
-Require Datatypes.
-Require Logic.
-
-Open Scope nat_scope.
-
-Definition eq_S := (f_equal nat nat S).
-
-Hint eq_S : v62 := Resolve (f_equal nat nat S).
-Hint eq_nat_unary : core := Resolve (f_equal nat).
-
-(** The predecessor function *)
-
-Definition pred : nat->nat := [n:nat](Cases n of O => O | (S u) => u end).
-Hint eq_pred : v62 := Resolve (f_equal nat nat pred).
-
-Theorem pred_Sn : (m:nat) m=(pred (S m)).
-Proof.
- Auto.
-Qed.
-
-Theorem eq_add_S : (n,m:nat) (S n)=(S m) -> n=m.
-Proof.
- Intros n m H ; Change (pred (S n))=(pred (S m)); Auto.
-Qed.
-
-Hints Immediate eq_add_S : core v62.
-
-(** A consequence of the previous axioms *)
-
-Theorem not_eq_S : (n,m:nat) ~(n=m) -> ~((S n)=(S m)).
-Proof.
- Red; Auto.
-Qed.
-Hints Resolve not_eq_S : core v62.
-
-Definition IsSucc : nat->Prop
- := [n:nat]Cases n of O => False | (S p) => True end.
-
-
-Theorem O_S : (n:nat)~(O=(S n)).
-Proof.
- Red;Intros n H.
- Change (IsSucc O).
- Rewrite <- (sym_eq nat O (S n));[Exact I | Assumption].
-Qed.
-Hints Resolve O_S : core v62.
-
-Theorem n_Sn : (n:nat) ~(n=(S n)).
-Proof.
- NewInduction n ; Auto.
-Qed.
-Hints Resolve n_Sn : core v62.
-
-(** Addition *)
-
-Fixpoint plus [n:nat] : nat -> nat :=
- [m:nat]Cases n of
- O => m
- | (S p) => (S (plus p m)) end.
-Hint eq_plus : v62 := Resolve (f_equal2 nat nat nat plus).
-Hint eq_nat_binary : core := Resolve (f_equal2 nat nat).
-
-V8Infix "+" plus : nat_scope.
-
-Lemma plus_n_O : (n:nat) n=(plus n O).
-Proof.
- NewInduction n ; Simpl ; Auto.
-Qed.
-Hints Resolve plus_n_O : core v62.
-
-Lemma plus_O_n : (n:nat) (plus O n)=n.
-Proof.
- Auto.
-Qed.
-
-Lemma plus_n_Sm : (n,m:nat) (S (plus n m))=(plus n (S m)).
-Proof.
- Intros n m; NewInduction n; Simpl; Auto.
-Qed.
-Hints Resolve plus_n_Sm : core v62.
-
-Lemma plus_Sn_m : (n,m:nat)(plus (S n) m)=(S (plus n m)).
-Proof.
- Auto.
-Qed.
-
-(** Multiplication *)
-
-Fixpoint mult [n:nat] : nat -> nat :=
- [m:nat]Cases n of O => O
- | (S p) => (plus m (mult p m)) end.
-Hint eq_mult : core v62 := Resolve (f_equal2 nat nat nat mult).
-
-V8Infix "*" mult : nat_scope.
-
-Lemma mult_n_O : (n:nat) O=(mult n O).
-Proof.
- NewInduction n; Simpl; Auto.
-Qed.
-Hints Resolve mult_n_O : core v62.
-
-Lemma mult_n_Sm : (n,m:nat) (plus (mult n m) n)=(mult n (S m)).
-Proof.
- Intros; NewInduction n as [|p H]; Simpl; Auto.
- NewDestruct H; Rewrite <- plus_n_Sm; Apply (f_equal nat nat S).
- Pattern 1 3 m; Elim m; Simpl; Auto.
-Qed.
-Hints Resolve mult_n_Sm : core v62.
-
-(** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *)
-
-Fixpoint minus [n:nat] : nat -> nat :=
- [m:nat]Cases n m of
- O _ => O
- | (S k) O => (S k)
- | (S k) (S l) => (minus k l)
- end.
-
-V8Infix "-" minus : nat_scope.
-
-(** Definition of the usual orders, the basic properties of [le] and [lt]
- can be found in files Le and Lt *)
-
-(** An inductive definition to define the order *)
-
-Inductive le [n:nat] : nat -> Prop
- := le_n : (le n n)
- | le_S : (m:nat)(le n m)->(le n (S m)).
-
-V8Infix "<=" le : nat_scope.
-
-Hint constr_le : core v62 := Constructors le.
-(*i equivalent to : "Hints Resolve le_n le_S : core v62." i*)
-
-Definition lt := [n,m:nat](le (S n) m).
-Hints Unfold lt : core v62.
-
-V8Infix "<" lt : nat_scope.
-
-Definition ge := [n,m:nat](le m n).
-Hints Unfold ge : core v62.
-
-V8Infix ">=" ge : nat_scope.
-
-Definition gt := [n,m:nat](lt m n).
-Hints Unfold gt : core v62.
-
-V8Infix ">" gt : nat_scope.
-
-V8Notation "x <= y <= z" := (le x y)/\(le y z) : nat_scope.
-V8Notation "x <= y < z" := (le x y)/\(lt y z) : nat_scope.
-V8Notation "x < y < z" := (lt x y)/\(lt y z) : nat_scope.
-V8Notation "x < y <= z" := (lt x y)/\(le y z) : nat_scope.
-
-(** Pattern-Matching on natural numbers *)
-
-Theorem nat_case : (n:nat)(P:nat->Prop)(P O)->((m:nat)(P (S m)))->(P n).
-Proof.
- NewInduction n ; Auto.
-Qed.
-
-(** Principle of double induction *)
-
-Theorem nat_double_ind : (R:nat->nat->Prop)
- ((n:nat)(R O n)) -> ((n:nat)(R (S n) O))
- -> ((n,m:nat)(R n m)->(R (S n) (S m)))
- -> (n,m:nat)(R n m).
-Proof.
- NewInduction n; Auto.
- NewDestruct m; Auto.
-Qed.
-
-(** Notations *)
-V7only[
-Syntax constr
- level 0:
- S [ (S $p) ] -> [$p:"nat_printer":9]
- | O [ O ] -> ["(0)"].
-].
-
-V7only [
-(* For parsing/printing based on scopes *)
-Module nat_scope.
-Infix 4 "+" plus : nat_scope.
-Infix 3 "*" mult : nat_scope.
-Infix 4 "-" minus : nat_scope.
-Infix NONA 5 "<=" le : nat_scope.
-Infix NONA 5 "<" lt : nat_scope.
-Infix NONA 5 ">=" ge : nat_scope.
-Infix NONA 5 ">" gt : nat_scope.
-End nat_scope.
-].
diff --git a/theories7/Init/Prelude.v b/theories7/Init/Prelude.v
deleted file mode 100755
index 2752f462..00000000
--- a/theories7/Init/Prelude.v
+++ /dev/null
@@ -1,16 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Prelude.v,v 1.1.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-Require Export Notations.
-Require Export Logic.
-Require Export Datatypes.
-Require Export Specif.
-Require Export Peano.
-Require Export Wf.
diff --git a/theories7/Init/Specif.v b/theories7/Init/Specif.v
deleted file mode 100755
index c39e5ed8..00000000
--- a/theories7/Init/Specif.v
+++ /dev/null
@@ -1,204 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Specif.v,v 1.2.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-Set Implicit Arguments.
-V7only [Unset Implicit Arguments.].
-
-(** Basic specifications : Sets containing logical information *)
-
-Require Notations.
-Require Datatypes.
-Require Logic.
-
-(** Subsets *)
-
-(** [(sig A P)], or more suggestively [{x:A | (P x)}], denotes the subset
- of elements of the Set [A] which satisfy the predicate [P].
- Similarly [(sig2 A P Q)], or [{x:A | (P x) & (Q x)}], denotes the subset
- of elements of the Set [A] which satisfy both [P] and [Q]. *)
-
-Inductive sig [A:Set;P:A->Prop] : Set
- := exist : (x:A)(P x) -> (sig A P).
-
-Inductive sig2 [A:Set;P,Q:A->Prop] : Set
- := exist2 : (x:A)(P x) -> (Q x) -> (sig2 A P Q).
-
-(** [(sigS A P)], or more suggestively [{x:A & (P x)}], is a subtle variant
- of subset where [P] is now of type [Set].
- Similarly for [(sigS2 A P Q)], also written [{x:A & (P x) & (Q x)}]. *)
-
-Inductive sigS [A:Set;P:A->Set] : Set
- := existS : (x:A)(P x) -> (sigS A P).
-
-Inductive sigS2 [A:Set;P,Q:A->Set] : Set
- := existS2 : (x:A)(P x) -> (Q x) -> (sigS2 A P Q).
-
-Arguments Scope sig [type_scope type_scope].
-Arguments Scope sig2 [type_scope type_scope type_scope].
-Arguments Scope sigS [type_scope type_scope].
-Arguments Scope sigS2 [type_scope type_scope type_scope].
-
-Notation "{ x : A | P }" := (sig A [x:A]P) : type_scope.
-Notation "{ x : A | P & Q }" := (sig2 A [x:A]P [x:A]Q) : type_scope.
-Notation "{ x : A & P }" := (sigS A [x:A]P) : type_scope.
-Notation "{ x : A & P & Q }" := (sigS2 A [x:A]P [x:A]Q) : type_scope.
-
-Add Printing Let sig.
-Add Printing Let sig2.
-Add Printing Let sigS.
-Add Printing Let sigS2.
-
-
-(** Projections of sig *)
-
-Section Subset_projections.
-
- Variable A:Set.
- Variable P:A->Prop.
-
- Definition proj1_sig :=
- [e:(sig A P)]Cases e of (exist a b) => a end.
-
- Definition proj2_sig :=
- [e:(sig A P)]
- <[e:(sig A P)](P (proj1_sig e))>Cases e of (exist a b) => b end.
-
-End Subset_projections.
-
-
-(** Projections of sigS *)
-
-Section Projections.
-
- Variable A:Set.
- Variable P:A->Set.
-
- (** An element [y] of a subset [{x:A & (P x)}] is the pair of an [a] of
- type [A] and of a proof [h] that [a] satisfies [P].
- Then [(projS1 y)] is the witness [a]
- and [(projS2 y)] is the proof of [(P a)] *)
-
- Definition projS1 : (sigS A P) -> A
- := [x:(sigS A P)]Cases x of (existS a _) => a end.
- Definition projS2 : (x:(sigS A P))(P (projS1 x))
- := [x:(sigS A P)]<[x:(sigS A P)](P (projS1 x))>
- Cases x of (existS _ h) => h end.
-
-End Projections.
-
-
-(** Extended_booleans *)
-
-Inductive sumbool [A,B:Prop] : Set
- := left : A -> {A}+{B}
- | right : B -> {A}+{B}
-
-where "{ A } + { B }" := (sumbool A B) : type_scope.
-
-Inductive sumor [A:Set;B:Prop] : Set
- := inleft : A -> A+{B}
- | inright : B -> A+{B}
-
-where "A + { B }" := (sumor A B) : type_scope.
-
-(** Choice *)
-
-Section Choice_lemmas.
-
- (** The following lemmas state various forms of the axiom of choice *)
-
- Variables S,S':Set.
- Variable R:S->S'->Prop.
- Variable R':S->S'->Set.
- Variables R1,R2 :S->Prop.
-
- Lemma Choice : ((x:S)(sig ? [y:S'](R x y))) ->
- (sig ? [f:S->S'](z:S)(R z (f z))).
- Proof.
- Intro H.
- Exists [z:S]Cases (H z) of (exist y _) => y end.
- Intro z; NewDestruct (H z); Trivial.
- Qed.
-
- Lemma Choice2 : ((x:S)(sigS ? [y:S'](R' x y))) ->
- (sigS ? [f:S->S'](z:S)(R' z (f z))).
- Proof.
- Intro H.
- Exists [z:S]Cases (H z) of (existS y _) => y end.
- Intro z; NewDestruct (H z); Trivial.
- Qed.
-
- Lemma bool_choice :
- ((x:S)(sumbool (R1 x) (R2 x))) ->
- (sig ? [f:S->bool] (x:S)( ((f x)=true /\ (R1 x))
- \/ ((f x)=false /\ (R2 x)))).
- Proof.
- Intro H.
- Exists [z:S]Cases (H z) of (left _) => true | (right _) => false end.
- Intro z; NewDestruct (H z); Auto.
- Qed.
-
-End Choice_lemmas.
-
- (** A result of type [(Exc A)] is either a normal value of type [A] or
- an [error] :
- [Inductive Exc [A:Set] : Set := value : A->(Exc A) | error : (Exc A)]
- it is implemented using the option type. *)
-
-Definition Exc := option.
-Definition value := Some.
-Definition error := !None.
-
-Implicits error [1].
-
-Definition except := False_rec. (* for compatibility with previous versions *)
-
-Implicits except [1].
-
-V7only [
-Notation Except := (!except ?) (only parsing).
-Notation Error := (!error ?) (only parsing).
-V7only [Implicits error [].].
-V7only [Implicits except [].].
-].
-Theorem absurd_set : (A:Prop)(C:Set)A->(~A)->C.
-Proof.
- Intros A C h1 h2.
- Apply False_rec.
- Apply (h2 h1).
-Qed.
-
-Hints Resolve left right inleft inright : core v62.
-
-(** Sigma Type at Type level [sigT] *)
-
-Inductive sigT [A:Type;P:A->Type] : Type
- := existT : (x:A)(P x) -> (sigT A P).
-
-Section projections_sigT.
-
- Variable A:Type.
- Variable P:A->Type.
-
- Definition projT1 : (sigT A P) -> A
- := [H:(sigT A P)]Cases H of (existT x _) => x end.
-
- Definition projT2 : (x:(sigT A P))(P (projT1 x))
- := [H:(sigT A P)]<[H:(sigT A P)](P (projT1 H))>
- Cases H of (existT x h) => h end.
-
-End projections_sigT.
-
-V7only [
-Notation ProjS1 := (projS1 ? ?).
-Notation ProjS2 := (projS2 ? ?).
-Notation Value := (value ?).
-].
-
diff --git a/theories7/Init/Wf.v b/theories7/Init/Wf.v
deleted file mode 100755
index b65057eb..00000000
--- a/theories7/Init/Wf.v
+++ /dev/null
@@ -1,158 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Set Implicit Arguments.
-V7only [Unset Implicit Arguments.].
-
-(*i $Id: Wf.v,v 1.1.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
-
-(** This module proves the validity of
- - well-founded recursion (also called course of values)
- - well-founded induction
-
- from a well-founded ordering on a given set *)
-
-Require Notations.
-Require Logic.
-Require Datatypes.
-
-(** Well-founded induction principle on Prop *)
-
-Chapter Well_founded.
-
- Variable A : Set.
- Variable R : A -> A -> Prop.
-
- (** The accessibility predicate is defined to be non-informative *)
-
- Inductive Acc : A -> Prop
- := Acc_intro : (x:A)((y:A)(R y x)->(Acc y))->(Acc x).
-
- Lemma Acc_inv : (x:A)(Acc x) -> (y:A)(R y x) -> (Acc y).
- NewDestruct 1; Trivial.
- Defined.
-
- (** the informative elimination :
- [let Acc_rec F = let rec wf x = F x wf in wf] *)
-
- Section AccRecType.
- Variable P : A -> Type.
- Variable F : (x:A)((y:A)(R y x)->(Acc y))->((y:A)(R y x)->(P y))->(P x).
-
- Fixpoint Acc_rect [x:A;a:(Acc x)] : (P x)
- := (F x (Acc_inv x a) ([y:A][h:(R y x)](Acc_rect y (Acc_inv x a y h)))).
-
- End AccRecType.
-
- Definition Acc_rec [P:A->Set] := (Acc_rect P).
-
- (** A simplified version of Acc_rec(t) *)
-
- Section AccIter.
- Variable P : A -> Type.
- Variable F : (x:A)((y:A)(R y x)-> (P y))->(P x).
-
- Fixpoint Acc_iter [x:A;a:(Acc x)] : (P x)
- := (F x ([y:A][h:(R y x)](Acc_iter y (Acc_inv x a y h)))).
-
- End AccIter.
-
- (** A relation is well-founded if every element is accessible *)
-
- Definition well_founded := (a:A)(Acc a).
-
- (** well-founded induction on Set and Prop *)
-
- Hypothesis Rwf : well_founded.
-
- Theorem well_founded_induction_type :
- (P:A->Type)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
- Proof.
- Intros; Apply (Acc_iter P); Auto.
- Defined.
-
- Theorem well_founded_induction :
- (P:A->Set)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
- Proof.
- Exact [P:A->Set](well_founded_induction_type P).
- Defined.
-
- Theorem well_founded_ind :
- (P:A->Prop)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
- Proof.
- Exact [P:A->Prop](well_founded_induction_type P).
- Defined.
-
-(** Building fixpoints *)
-
-Section FixPoint.
-
-Variable P : A -> Set.
-Variable F : (x:A)((y:A)(R y x)->(P y))->(P x).
-
-Fixpoint Fix_F [x:A;r:(Acc x)] : (P x) :=
- (F x [y:A][p:(R y x)](Fix_F y (Acc_inv x r y p))).
-
-Definition fix := [x:A](Fix_F x (Rwf x)).
-
-(** Proof that [well_founded_induction] satisfies the fixpoint equation.
- It requires an extra property of the functional *)
-
-Hypothesis F_ext :
- (x:A)(f,g:(y:A)(R y x)->(P y))
- ((y:A)(p:(R y x))((f y p)=(g y p)))->(F x f)=(F x g).
-
-Scheme Acc_inv_dep := Induction for Acc Sort Prop.
-
-Lemma Fix_F_eq
- : (x:A)(r:(Acc x))
- (F x [y:A][p:(R y x)](Fix_F y (Acc_inv x r y p)))=(Fix_F x r).
-NewDestruct r using Acc_inv_dep; Auto.
-Qed.
-
-Lemma Fix_F_inv : (x:A)(r,s:(Acc x))(Fix_F x r)=(Fix_F x s).
-Intro x; NewInduction (Rwf x); Intros.
-Rewrite <- (Fix_F_eq x r); Rewrite <- (Fix_F_eq x s); Intros.
-Apply F_ext; Auto.
-Qed.
-
-
-Lemma Fix_eq : (x:A)(fix x)=(F x [y:A][p:(R y x)](fix y)).
-Intro x; Unfold fix.
-Rewrite <- (Fix_F_eq x).
-Apply F_ext; Intros.
-Apply Fix_F_inv.
-Qed.
-
-End FixPoint.
-
-End Well_founded.
-
-(** A recursor over pairs *)
-
-Chapter Well_founded_2.
-
- Variable A,B : Set.
- Variable R : A * B -> A * B -> Prop.
-
- Variable P : A -> B -> Type.
- Variable F : (x:A)(x':B)((y:A)(y':B)(R (y,y') (x,x'))-> (P y y'))->(P x x').
-
- Fixpoint Acc_iter_2 [x:A;x':B;a:(Acc ? R (x,x'))] : (P x x')
- := (F x x' ([y:A][y':B][h:(R (y,y') (x,x'))](Acc_iter_2 y y' (Acc_inv ? ? (x,x') a (y,y') h)))).
-
- Hypothesis Rwf : (well_founded ? R).
-
- Theorem well_founded_induction_type_2 :
- ((x:A)(x':B)((y:A)(y':B)(R (y,y') (x,x'))->(P y y'))->(P x x'))->(a:A)(b:B)(P a b).
- Proof.
- Intros; Apply Acc_iter_2; Auto.
- Defined.
-
-End Well_founded_2.
-