diff options
Diffstat (limited to 'theories7/Init/Peano.v')
-rwxr-xr-x | theories7/Init/Peano.v | 218 |
1 files changed, 0 insertions, 218 deletions
diff --git a/theories7/Init/Peano.v b/theories7/Init/Peano.v deleted file mode 100755 index 72d19399..00000000 --- a/theories7/Init/Peano.v +++ /dev/null @@ -1,218 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Peano.v,v 1.1.2.1 2004/07/16 19:31:26 herbelin Exp $ i*) - -(** Natural numbers [nat] built from [O] and [S] are defined in Datatypes.v *) - -(** This module defines the following operations on natural numbers : - - predecessor [pred] - - addition [plus] - - multiplication [mult] - - less or equal order [le] - - less [lt] - - greater or equal [ge] - - greater [gt] - - This module states various lemmas and theorems about natural numbers, - including Peano's axioms of arithmetic (in Coq, these are in fact provable) - Case analysis on [nat] and induction on [nat * nat] are provided too *) - -Require Notations. -Require Datatypes. -Require Logic. - -Open Scope nat_scope. - -Definition eq_S := (f_equal nat nat S). - -Hint eq_S : v62 := Resolve (f_equal nat nat S). -Hint eq_nat_unary : core := Resolve (f_equal nat). - -(** The predecessor function *) - -Definition pred : nat->nat := [n:nat](Cases n of O => O | (S u) => u end). -Hint eq_pred : v62 := Resolve (f_equal nat nat pred). - -Theorem pred_Sn : (m:nat) m=(pred (S m)). -Proof. - Auto. -Qed. - -Theorem eq_add_S : (n,m:nat) (S n)=(S m) -> n=m. -Proof. - Intros n m H ; Change (pred (S n))=(pred (S m)); Auto. -Qed. - -Hints Immediate eq_add_S : core v62. - -(** A consequence of the previous axioms *) - -Theorem not_eq_S : (n,m:nat) ~(n=m) -> ~((S n)=(S m)). -Proof. - Red; Auto. -Qed. -Hints Resolve not_eq_S : core v62. - -Definition IsSucc : nat->Prop - := [n:nat]Cases n of O => False | (S p) => True end. - - -Theorem O_S : (n:nat)~(O=(S n)). -Proof. - Red;Intros n H. - Change (IsSucc O). - Rewrite <- (sym_eq nat O (S n));[Exact I | Assumption]. -Qed. -Hints Resolve O_S : core v62. - -Theorem n_Sn : (n:nat) ~(n=(S n)). -Proof. - NewInduction n ; Auto. -Qed. -Hints Resolve n_Sn : core v62. - -(** Addition *) - -Fixpoint plus [n:nat] : nat -> nat := - [m:nat]Cases n of - O => m - | (S p) => (S (plus p m)) end. -Hint eq_plus : v62 := Resolve (f_equal2 nat nat nat plus). -Hint eq_nat_binary : core := Resolve (f_equal2 nat nat). - -V8Infix "+" plus : nat_scope. - -Lemma plus_n_O : (n:nat) n=(plus n O). -Proof. - NewInduction n ; Simpl ; Auto. -Qed. -Hints Resolve plus_n_O : core v62. - -Lemma plus_O_n : (n:nat) (plus O n)=n. -Proof. - Auto. -Qed. - -Lemma plus_n_Sm : (n,m:nat) (S (plus n m))=(plus n (S m)). -Proof. - Intros n m; NewInduction n; Simpl; Auto. -Qed. -Hints Resolve plus_n_Sm : core v62. - -Lemma plus_Sn_m : (n,m:nat)(plus (S n) m)=(S (plus n m)). -Proof. - Auto. -Qed. - -(** Multiplication *) - -Fixpoint mult [n:nat] : nat -> nat := - [m:nat]Cases n of O => O - | (S p) => (plus m (mult p m)) end. -Hint eq_mult : core v62 := Resolve (f_equal2 nat nat nat mult). - -V8Infix "*" mult : nat_scope. - -Lemma mult_n_O : (n:nat) O=(mult n O). -Proof. - NewInduction n; Simpl; Auto. -Qed. -Hints Resolve mult_n_O : core v62. - -Lemma mult_n_Sm : (n,m:nat) (plus (mult n m) n)=(mult n (S m)). -Proof. - Intros; NewInduction n as [|p H]; Simpl; Auto. - NewDestruct H; Rewrite <- plus_n_Sm; Apply (f_equal nat nat S). - Pattern 1 3 m; Elim m; Simpl; Auto. -Qed. -Hints Resolve mult_n_Sm : core v62. - -(** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *) - -Fixpoint minus [n:nat] : nat -> nat := - [m:nat]Cases n m of - O _ => O - | (S k) O => (S k) - | (S k) (S l) => (minus k l) - end. - -V8Infix "-" minus : nat_scope. - -(** Definition of the usual orders, the basic properties of [le] and [lt] - can be found in files Le and Lt *) - -(** An inductive definition to define the order *) - -Inductive le [n:nat] : nat -> Prop - := le_n : (le n n) - | le_S : (m:nat)(le n m)->(le n (S m)). - -V8Infix "<=" le : nat_scope. - -Hint constr_le : core v62 := Constructors le. -(*i equivalent to : "Hints Resolve le_n le_S : core v62." i*) - -Definition lt := [n,m:nat](le (S n) m). -Hints Unfold lt : core v62. - -V8Infix "<" lt : nat_scope. - -Definition ge := [n,m:nat](le m n). -Hints Unfold ge : core v62. - -V8Infix ">=" ge : nat_scope. - -Definition gt := [n,m:nat](lt m n). -Hints Unfold gt : core v62. - -V8Infix ">" gt : nat_scope. - -V8Notation "x <= y <= z" := (le x y)/\(le y z) : nat_scope. -V8Notation "x <= y < z" := (le x y)/\(lt y z) : nat_scope. -V8Notation "x < y < z" := (lt x y)/\(lt y z) : nat_scope. -V8Notation "x < y <= z" := (lt x y)/\(le y z) : nat_scope. - -(** Pattern-Matching on natural numbers *) - -Theorem nat_case : (n:nat)(P:nat->Prop)(P O)->((m:nat)(P (S m)))->(P n). -Proof. - NewInduction n ; Auto. -Qed. - -(** Principle of double induction *) - -Theorem nat_double_ind : (R:nat->nat->Prop) - ((n:nat)(R O n)) -> ((n:nat)(R (S n) O)) - -> ((n,m:nat)(R n m)->(R (S n) (S m))) - -> (n,m:nat)(R n m). -Proof. - NewInduction n; Auto. - NewDestruct m; Auto. -Qed. - -(** Notations *) -V7only[ -Syntax constr - level 0: - S [ (S $p) ] -> [$p:"nat_printer":9] - | O [ O ] -> ["(0)"]. -]. - -V7only [ -(* For parsing/printing based on scopes *) -Module nat_scope. -Infix 4 "+" plus : nat_scope. -Infix 3 "*" mult : nat_scope. -Infix 4 "-" minus : nat_scope. -Infix NONA 5 "<=" le : nat_scope. -Infix NONA 5 "<" lt : nat_scope. -Infix NONA 5 ">=" ge : nat_scope. -Infix NONA 5 ">" gt : nat_scope. -End nat_scope. -]. |