diff options
Diffstat (limited to 'theories7/Init/Logic.v')
-rwxr-xr-x | theories7/Init/Logic.v | 306 |
1 files changed, 306 insertions, 0 deletions
diff --git a/theories7/Init/Logic.v b/theories7/Init/Logic.v new file mode 100755 index 00000000..6ba9c7a1 --- /dev/null +++ b/theories7/Init/Logic.v @@ -0,0 +1,306 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Logic.v,v 1.6.2.1 2004/07/16 19:31:26 herbelin Exp $ i*) + +Set Implicit Arguments. +V7only [Unset Implicit Arguments.]. + +Require Notations. + +(** [True] is the always true proposition *) +Inductive True : Prop := I : True. + +(** [False] is the always false proposition *) +Inductive False : Prop := . + +(** [not A], written [~A], is the negation of [A] *) +Definition not := [A:Prop]A->False. + +Notation "~ x" := (not x) : type_scope. + +Hints Unfold not : core. + +Inductive and [A,B:Prop] : Prop := conj : A -> B -> A /\ B + +where "A /\ B" := (and A B) : type_scope. + +V7only[ +Notation "< P , Q > { p , q }" := (conj P Q p q) (P annot, at level 1). +]. + +Section Conjunction. + + (** [and A B], written [A /\ B], is the conjunction of [A] and [B] + + [conj A B p q], written [<p,q>] is a proof of [A /\ B] as soon as + [p] is a proof of [A] and [q] a proof of [B] + + [proj1] and [proj2] are first and second projections of a conjunction *) + + Variables A,B : Prop. + + Theorem proj1 : (and A B) -> A. + Proof. + NewDestruct 1; Trivial. + Qed. + + Theorem proj2 : (and A B) -> B. + Proof. + NewDestruct 1; Trivial. + Qed. + +End Conjunction. + +(** [or A B], written [A \/ B], is the disjunction of [A] and [B] *) + +Inductive or [A,B:Prop] : Prop := + or_introl : A -> A \/ B + | or_intror : B -> A \/ B + +where "A \/ B" := (or A B) : type_scope. + +(** [iff A B], written [A <-> B], expresses the equivalence of [A] and [B] *) + +Definition iff := [A,B:Prop] (and (A->B) (B->A)). + +Notation "A <-> B" := (iff A B) : type_scope. + +Section Equivalence. + +Theorem iff_refl : (A:Prop) (iff A A). + Proof. + Split; Auto. + Qed. + +Theorem iff_trans : (a,b,c:Prop) (iff a b) -> (iff b c) -> (iff a c). + Proof. + Intros A B C (H1,H2) (H3,H4); Split; Auto. + Qed. + +Theorem iff_sym : (A,B:Prop) (iff A B) -> (iff B A). + Proof. + Intros A B (H1,H2); Split; Auto. + Qed. + +End Equivalence. + +(** [(IF P Q R)], or more suggestively [(either P and_then Q or_else R)], + denotes either [P] and [Q], or [~P] and [Q] *) +Definition IF_then_else := [P,Q,R:Prop] (or (and P Q) (and (not P) R)). +V7only [Notation IF:=IF_then_else.]. + +Notation "'IF' c1 'then' c2 'else' c3" := (IF c1 c2 c3) + (at level 1, c1, c2, c3 at level 8) : type_scope + V8only (at level 200). + +(** First-order quantifiers *) + + (** [ex A P], or simply [exists x, P x], expresses the existence of an + [x] of type [A] which satisfies the predicate [P] ([A] is of type + [Set]). This is existential quantification. *) + + (** [ex2 A P Q], or simply [exists2 x, P x & Q x], expresses the + existence of an [x] of type [A] which satisfies both the predicates + [P] and [Q] *) + + (** Universal quantification (especially first-order one) is normally + written [forall x:A, P x]. For duality with existential quantification, + the construction [all P] is provided too *) + +Inductive ex [A:Type;P:A->Prop] : Prop + := ex_intro : (x:A)(P x)->(ex A P). + +Inductive ex2 [A:Type;P,Q:A->Prop] : Prop + := ex_intro2 : (x:A)(P x)->(Q x)->(ex2 A P Q). + +Definition all := [A:Type][P:A->Prop](x:A)(P x). + +(* Rule order is important to give printing priority to fully typed exists *) + +V7only [ Notation Ex := (ex ?). ]. +Notation "'EX' x | p" := (ex ? [x]p) + (at level 10, p at level 8) : type_scope + V8only "'exists' x , p" (at level 200, x ident, p at level 99). +Notation "'EX' x : t | p" := (ex ? [x:t]p) + (at level 10, p at level 8) : type_scope + V8only "'exists' x : t , p" (at level 200, x ident, p at level 99, format + "'exists' '/ ' x : t , '/ ' p"). + +V7only [ Notation Ex2 := (ex2 ?). ]. +Notation "'EX' x | p & q" := (ex2 ? [x]p [x]q) + (at level 10, p, q at level 8) : type_scope + V8only "'exists2' x , p & q" (at level 200, x ident, p, q at level 99). +Notation "'EX' x : t | p & q" := (ex2 ? [x:t]p [x:t]q) + (at level 10, p, q at level 8) : type_scope + V8only "'exists2' x : t , p & q" + (at level 200, x ident, t at level 200, p, q at level 99, format + "'exists2' '/ ' x : t , '/ ' '[' p & '/' q ']'"). + +V7only [Notation All := (all ?). +Notation "'ALL' x | p" := (all ? [x]p) + (at level 10, p at level 8) : type_scope + V8only (at level 200, x ident, p at level 200). +Notation "'ALL' x : t | p" := (all ? [x:t]p) + (at level 10, p at level 8) : type_scope + V8only (at level 200, x ident, t, p at level 200). +]. + +(** Universal quantification *) + +Section universal_quantification. + + Variable A : Type. + Variable P : A->Prop. + + Theorem inst : (x:A)(all ? [x](P x))->(P x). + Proof. + Unfold all; Auto. + Qed. + + Theorem gen : (B:Prop)(f:(y:A)B->(P y))B->(all A P). + Proof. + Red; Auto. + Qed. + + End universal_quantification. + +(** Equality *) + +(** [eq A x y], or simply [x=y], expresses the (Leibniz') equality + of [x] and [y]. Both [x] and [y] must belong to the same type [A]. + The definition is inductive and states the reflexivity of the equality. + The others properties (symmetry, transitivity, replacement of + equals) are proved below *) + +Inductive eq [A:Type;x:A] : A->Prop + := refl_equal : x = x :> A + +where "x = y :> A" := (!eq A x y) : type_scope. + +Notation "x = y" := (eq ? x y) : type_scope. +Notation "x <> y :> T" := ~ (!eq T x y) : type_scope. +Notation "x <> y" := ~ x=y : type_scope. + +Implicits eq_ind [1]. +Implicits eq_rec [1]. +Implicits eq_rect [1]. +V7only [ +Implicits eq_ind []. +Implicits eq_rec []. +Implicits eq_rect []. +]. + +Hints Resolve I conj or_introl or_intror refl_equal : core v62. +Hints Resolve ex_intro ex_intro2 : core v62. + +Section Logic_lemmas. + + Theorem absurd : (A:Prop)(C:Prop) A -> (not A) -> C. + Proof. + Unfold not; Intros A C h1 h2. + NewDestruct (h2 h1). + Qed. + + Section equality. + Variable A,B : Type. + Variable f : A->B. + Variable x,y,z : A. + + Theorem sym_eq : (eq ? x y) -> (eq ? y x). + Proof. + NewDestruct 1; Trivial. + Defined. + Opaque sym_eq. + + Theorem trans_eq : (eq ? x y) -> (eq ? y z) -> (eq ? x z). + Proof. + NewDestruct 2; Trivial. + Defined. + Opaque trans_eq. + + Theorem f_equal : (eq ? x y) -> (eq ? (f x) (f y)). + Proof. + NewDestruct 1; Trivial. + Defined. + Opaque f_equal. + + Theorem sym_not_eq : (not (eq ? x y)) -> (not (eq ? y x)). + Proof. + Red; Intros h1 h2; Apply h1; NewDestruct h2; Trivial. + Qed. + + Definition sym_equal := sym_eq. + Definition sym_not_equal := sym_not_eq. + Definition trans_equal := trans_eq. + + End equality. + +(* Is now a primitive principle + Theorem eq_rect: (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? x y)->(P y). + Proof. + Intros. + Cut (identity A x y). + NewDestruct 1; Auto. + NewDestruct H; Auto. + Qed. +*) + + Definition eq_ind_r : (A:Type)(x:A)(P:A->Prop)(P x)->(y:A)(eq ? y x)->(P y). + Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption. + Defined. + + Definition eq_rec_r : (A:Type)(x:A)(P:A->Set)(P x)->(y:A)(eq ? y x)->(P y). + Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption. + Defined. + + Definition eq_rect_r : (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? y x)->(P y). + Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption. + Defined. +End Logic_lemmas. + +Theorem f_equal2 : (A1,A2,B:Type)(f:A1->A2->B)(x1,y1:A1)(x2,y2:A2) + (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? (f x1 x2) (f y1 y2)). +Proof. + NewDestruct 1; NewDestruct 1; Reflexivity. +Qed. + +Theorem f_equal3 : (A1,A2,A3,B:Type)(f:A1->A2->A3->B)(x1,y1:A1)(x2,y2:A2) + (x3,y3:A3)(eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) + -> (eq ? (f x1 x2 x3) (f y1 y2 y3)). +Proof. + NewDestruct 1; NewDestruct 1; NewDestruct 1; Reflexivity. +Qed. + +Theorem f_equal4 : (A1,A2,A3,A4,B:Type)(f:A1->A2->A3->A4->B) + (x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4) + (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4) + -> (eq ? (f x1 x2 x3 x4) (f y1 y2 y3 y4)). +Proof. + NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1; Reflexivity. +Qed. + +Theorem f_equal5 : (A1,A2,A3,A4,A5,B:Type)(f:A1->A2->A3->A4->A5->B) + (x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4)(x5,y5:A5) + (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4) -> (eq ? x5 y5) + -> (eq ? (f x1 x2 x3 x4 x5) (f y1 y2 y3 y4 y5)). +Proof. + NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1; + Reflexivity. +Qed. + +Hints Immediate sym_eq sym_not_eq : core v62. + +V7only[ +(** Parsing only of things in [Logic.v] *) +Notation "< A > 'All' ( P )" :=(all A P) (A annot, at level 1, only parsing). +Notation "< A > x = y" := (eq A x y) + (A annot, at level 1, x at level 0, only parsing). +Notation "< A > x <> y" := ~(eq A x y) + (A annot, at level 1, x at level 0, only parsing). +]. |