diff options
Diffstat (limited to 'theories7/Init/Logic.v')
-rwxr-xr-x | theories7/Init/Logic.v | 306 |
1 files changed, 0 insertions, 306 deletions
diff --git a/theories7/Init/Logic.v b/theories7/Init/Logic.v deleted file mode 100755 index 6ba9c7a1..00000000 --- a/theories7/Init/Logic.v +++ /dev/null @@ -1,306 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Logic.v,v 1.6.2.1 2004/07/16 19:31:26 herbelin Exp $ i*) - -Set Implicit Arguments. -V7only [Unset Implicit Arguments.]. - -Require Notations. - -(** [True] is the always true proposition *) -Inductive True : Prop := I : True. - -(** [False] is the always false proposition *) -Inductive False : Prop := . - -(** [not A], written [~A], is the negation of [A] *) -Definition not := [A:Prop]A->False. - -Notation "~ x" := (not x) : type_scope. - -Hints Unfold not : core. - -Inductive and [A,B:Prop] : Prop := conj : A -> B -> A /\ B - -where "A /\ B" := (and A B) : type_scope. - -V7only[ -Notation "< P , Q > { p , q }" := (conj P Q p q) (P annot, at level 1). -]. - -Section Conjunction. - - (** [and A B], written [A /\ B], is the conjunction of [A] and [B] - - [conj A B p q], written [<p,q>] is a proof of [A /\ B] as soon as - [p] is a proof of [A] and [q] a proof of [B] - - [proj1] and [proj2] are first and second projections of a conjunction *) - - Variables A,B : Prop. - - Theorem proj1 : (and A B) -> A. - Proof. - NewDestruct 1; Trivial. - Qed. - - Theorem proj2 : (and A B) -> B. - Proof. - NewDestruct 1; Trivial. - Qed. - -End Conjunction. - -(** [or A B], written [A \/ B], is the disjunction of [A] and [B] *) - -Inductive or [A,B:Prop] : Prop := - or_introl : A -> A \/ B - | or_intror : B -> A \/ B - -where "A \/ B" := (or A B) : type_scope. - -(** [iff A B], written [A <-> B], expresses the equivalence of [A] and [B] *) - -Definition iff := [A,B:Prop] (and (A->B) (B->A)). - -Notation "A <-> B" := (iff A B) : type_scope. - -Section Equivalence. - -Theorem iff_refl : (A:Prop) (iff A A). - Proof. - Split; Auto. - Qed. - -Theorem iff_trans : (a,b,c:Prop) (iff a b) -> (iff b c) -> (iff a c). - Proof. - Intros A B C (H1,H2) (H3,H4); Split; Auto. - Qed. - -Theorem iff_sym : (A,B:Prop) (iff A B) -> (iff B A). - Proof. - Intros A B (H1,H2); Split; Auto. - Qed. - -End Equivalence. - -(** [(IF P Q R)], or more suggestively [(either P and_then Q or_else R)], - denotes either [P] and [Q], or [~P] and [Q] *) -Definition IF_then_else := [P,Q,R:Prop] (or (and P Q) (and (not P) R)). -V7only [Notation IF:=IF_then_else.]. - -Notation "'IF' c1 'then' c2 'else' c3" := (IF c1 c2 c3) - (at level 1, c1, c2, c3 at level 8) : type_scope - V8only (at level 200). - -(** First-order quantifiers *) - - (** [ex A P], or simply [exists x, P x], expresses the existence of an - [x] of type [A] which satisfies the predicate [P] ([A] is of type - [Set]). This is existential quantification. *) - - (** [ex2 A P Q], or simply [exists2 x, P x & Q x], expresses the - existence of an [x] of type [A] which satisfies both the predicates - [P] and [Q] *) - - (** Universal quantification (especially first-order one) is normally - written [forall x:A, P x]. For duality with existential quantification, - the construction [all P] is provided too *) - -Inductive ex [A:Type;P:A->Prop] : Prop - := ex_intro : (x:A)(P x)->(ex A P). - -Inductive ex2 [A:Type;P,Q:A->Prop] : Prop - := ex_intro2 : (x:A)(P x)->(Q x)->(ex2 A P Q). - -Definition all := [A:Type][P:A->Prop](x:A)(P x). - -(* Rule order is important to give printing priority to fully typed exists *) - -V7only [ Notation Ex := (ex ?). ]. -Notation "'EX' x | p" := (ex ? [x]p) - (at level 10, p at level 8) : type_scope - V8only "'exists' x , p" (at level 200, x ident, p at level 99). -Notation "'EX' x : t | p" := (ex ? [x:t]p) - (at level 10, p at level 8) : type_scope - V8only "'exists' x : t , p" (at level 200, x ident, p at level 99, format - "'exists' '/ ' x : t , '/ ' p"). - -V7only [ Notation Ex2 := (ex2 ?). ]. -Notation "'EX' x | p & q" := (ex2 ? [x]p [x]q) - (at level 10, p, q at level 8) : type_scope - V8only "'exists2' x , p & q" (at level 200, x ident, p, q at level 99). -Notation "'EX' x : t | p & q" := (ex2 ? [x:t]p [x:t]q) - (at level 10, p, q at level 8) : type_scope - V8only "'exists2' x : t , p & q" - (at level 200, x ident, t at level 200, p, q at level 99, format - "'exists2' '/ ' x : t , '/ ' '[' p & '/' q ']'"). - -V7only [Notation All := (all ?). -Notation "'ALL' x | p" := (all ? [x]p) - (at level 10, p at level 8) : type_scope - V8only (at level 200, x ident, p at level 200). -Notation "'ALL' x : t | p" := (all ? [x:t]p) - (at level 10, p at level 8) : type_scope - V8only (at level 200, x ident, t, p at level 200). -]. - -(** Universal quantification *) - -Section universal_quantification. - - Variable A : Type. - Variable P : A->Prop. - - Theorem inst : (x:A)(all ? [x](P x))->(P x). - Proof. - Unfold all; Auto. - Qed. - - Theorem gen : (B:Prop)(f:(y:A)B->(P y))B->(all A P). - Proof. - Red; Auto. - Qed. - - End universal_quantification. - -(** Equality *) - -(** [eq A x y], or simply [x=y], expresses the (Leibniz') equality - of [x] and [y]. Both [x] and [y] must belong to the same type [A]. - The definition is inductive and states the reflexivity of the equality. - The others properties (symmetry, transitivity, replacement of - equals) are proved below *) - -Inductive eq [A:Type;x:A] : A->Prop - := refl_equal : x = x :> A - -where "x = y :> A" := (!eq A x y) : type_scope. - -Notation "x = y" := (eq ? x y) : type_scope. -Notation "x <> y :> T" := ~ (!eq T x y) : type_scope. -Notation "x <> y" := ~ x=y : type_scope. - -Implicits eq_ind [1]. -Implicits eq_rec [1]. -Implicits eq_rect [1]. -V7only [ -Implicits eq_ind []. -Implicits eq_rec []. -Implicits eq_rect []. -]. - -Hints Resolve I conj or_introl or_intror refl_equal : core v62. -Hints Resolve ex_intro ex_intro2 : core v62. - -Section Logic_lemmas. - - Theorem absurd : (A:Prop)(C:Prop) A -> (not A) -> C. - Proof. - Unfold not; Intros A C h1 h2. - NewDestruct (h2 h1). - Qed. - - Section equality. - Variable A,B : Type. - Variable f : A->B. - Variable x,y,z : A. - - Theorem sym_eq : (eq ? x y) -> (eq ? y x). - Proof. - NewDestruct 1; Trivial. - Defined. - Opaque sym_eq. - - Theorem trans_eq : (eq ? x y) -> (eq ? y z) -> (eq ? x z). - Proof. - NewDestruct 2; Trivial. - Defined. - Opaque trans_eq. - - Theorem f_equal : (eq ? x y) -> (eq ? (f x) (f y)). - Proof. - NewDestruct 1; Trivial. - Defined. - Opaque f_equal. - - Theorem sym_not_eq : (not (eq ? x y)) -> (not (eq ? y x)). - Proof. - Red; Intros h1 h2; Apply h1; NewDestruct h2; Trivial. - Qed. - - Definition sym_equal := sym_eq. - Definition sym_not_equal := sym_not_eq. - Definition trans_equal := trans_eq. - - End equality. - -(* Is now a primitive principle - Theorem eq_rect: (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? x y)->(P y). - Proof. - Intros. - Cut (identity A x y). - NewDestruct 1; Auto. - NewDestruct H; Auto. - Qed. -*) - - Definition eq_ind_r : (A:Type)(x:A)(P:A->Prop)(P x)->(y:A)(eq ? y x)->(P y). - Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption. - Defined. - - Definition eq_rec_r : (A:Type)(x:A)(P:A->Set)(P x)->(y:A)(eq ? y x)->(P y). - Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption. - Defined. - - Definition eq_rect_r : (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? y x)->(P y). - Intros A x P H y H0; Elim sym_eq with 1:= H0; Assumption. - Defined. -End Logic_lemmas. - -Theorem f_equal2 : (A1,A2,B:Type)(f:A1->A2->B)(x1,y1:A1)(x2,y2:A2) - (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? (f x1 x2) (f y1 y2)). -Proof. - NewDestruct 1; NewDestruct 1; Reflexivity. -Qed. - -Theorem f_equal3 : (A1,A2,A3,B:Type)(f:A1->A2->A3->B)(x1,y1:A1)(x2,y2:A2) - (x3,y3:A3)(eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) - -> (eq ? (f x1 x2 x3) (f y1 y2 y3)). -Proof. - NewDestruct 1; NewDestruct 1; NewDestruct 1; Reflexivity. -Qed. - -Theorem f_equal4 : (A1,A2,A3,A4,B:Type)(f:A1->A2->A3->A4->B) - (x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4) - (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4) - -> (eq ? (f x1 x2 x3 x4) (f y1 y2 y3 y4)). -Proof. - NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1; Reflexivity. -Qed. - -Theorem f_equal5 : (A1,A2,A3,A4,A5,B:Type)(f:A1->A2->A3->A4->A5->B) - (x1,y1:A1)(x2,y2:A2)(x3,y3:A3)(x4,y4:A4)(x5,y5:A5) - (eq ? x1 y1) -> (eq ? x2 y2) -> (eq ? x3 y3) -> (eq ? x4 y4) -> (eq ? x5 y5) - -> (eq ? (f x1 x2 x3 x4 x5) (f y1 y2 y3 y4 y5)). -Proof. - NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1; NewDestruct 1; - Reflexivity. -Qed. - -Hints Immediate sym_eq sym_not_eq : core v62. - -V7only[ -(** Parsing only of things in [Logic.v] *) -Notation "< A > 'All' ( P )" :=(all A P) (A annot, at level 1, only parsing). -Notation "< A > x = y" := (eq A x y) - (A annot, at level 1, x at level 0, only parsing). -Notation "< A > x <> y" := ~(eq A x y) - (A annot, at level 1, x at level 0, only parsing). -]. |