summaryrefslogtreecommitdiff
path: root/theories7/Bool/Zerob.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Bool/Zerob.v')
-rwxr-xr-xtheories7/Bool/Zerob.v36
1 files changed, 36 insertions, 0 deletions
diff --git a/theories7/Bool/Zerob.v b/theories7/Bool/Zerob.v
new file mode 100755
index 00000000..24e48c28
--- /dev/null
+++ b/theories7/Bool/Zerob.v
@@ -0,0 +1,36 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Zerob.v,v 1.1.2.1 2004/07/16 19:31:25 herbelin Exp $ i*)
+
+Require Arith.
+Require Bool.
+
+V7only [Import nat_scope.].
+Open Local Scope nat_scope.
+
+Definition zerob : nat->bool
+ := [n:nat]Cases n of O => true | (S _) => false end.
+
+Lemma zerob_true_intro : (n:nat)(n=O)->(zerob n)=true.
+NewDestruct n; [Trivial with bool | Inversion 1].
+Qed.
+Hints Resolve zerob_true_intro : bool.
+
+Lemma zerob_true_elim : (n:nat)(zerob n)=true->(n=O).
+NewDestruct n; [Trivial with bool | Inversion 1].
+Qed.
+
+Lemma zerob_false_intro : (n:nat)~(n=O)->(zerob n)=false.
+NewDestruct n; [NewDestruct 1; Auto with bool | Trivial with bool].
+Qed.
+Hints Resolve zerob_false_intro : bool.
+
+Lemma zerob_false_elim : (n:nat)(zerob n)=false -> ~(n=O).
+NewDestruct n; [Intro H; Inversion H | Auto with bool].
+Qed.