summaryrefslogtreecommitdiff
path: root/theories7/Bool/BoolEq.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Bool/BoolEq.v')
-rw-r--r--theories7/Bool/BoolEq.v72
1 files changed, 0 insertions, 72 deletions
diff --git a/theories7/Bool/BoolEq.v b/theories7/Bool/BoolEq.v
deleted file mode 100644
index b670dbdd..00000000
--- a/theories7/Bool/BoolEq.v
+++ /dev/null
@@ -1,72 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: BoolEq.v,v 1.1.2.1 2004/07/16 19:31:25 herbelin Exp $ i*)
-(* Cuihtlauac Alvarado - octobre 2000 *)
-
-(** Properties of a boolean equality *)
-
-
-Require Export Bool.
-
-Section Bool_eq_dec.
-
- Variable A : Set.
-
- Variable beq : A -> A -> bool.
-
- Variable beq_refl : (x:A)true=(beq x x).
-
- Variable beq_eq : (x,y:A)true=(beq x y)->x=y.
-
- Definition beq_eq_true : (x,y:A)x=y->true=(beq x y).
- Proof.
- Intros x y H.
- Case H.
- Apply beq_refl.
- Defined.
-
- Definition beq_eq_not_false : (x,y:A)x=y->~false=(beq x y).
- Proof.
- Intros x y e.
- Rewrite <- beq_eq_true; Trivial; Discriminate.
- Defined.
-
- Definition beq_false_not_eq : (x,y:A)false=(beq x y)->~x=y.
- Proof.
- Exact [x,y:A; H:(false=(beq x y)); e:(x=y)](beq_eq_not_false x y e H).
- Defined.
-
- Definition exists_beq_eq : (x,y:A){b:bool | b=(beq x y)}.
- Proof.
- Intros.
- Exists (beq x y).
- Constructor.
- Defined.
-
- Definition not_eq_false_beq : (x,y:A)~x=y->false=(beq x y).
- Proof.
- Intros x y H.
- Symmetry.
- Apply not_true_is_false.
- Intro.
- Apply H.
- Apply beq_eq.
- Symmetry.
- Assumption.
- Defined.
-
- Definition eq_dec : (x,y:A){x=y}+{~x=y}.
- Proof.
- Intros x y; Case (exists_beq_eq x y).
- Intros b; Case b; Intro H.
- Left; Apply beq_eq; Assumption.
- Right; Apply beq_false_not_eq; Assumption.
- Defined.
-
-End Bool_eq_dec.