diff options
Diffstat (limited to 'theories7/Bool/BoolEq.v')
-rw-r--r-- | theories7/Bool/BoolEq.v | 72 |
1 files changed, 0 insertions, 72 deletions
diff --git a/theories7/Bool/BoolEq.v b/theories7/Bool/BoolEq.v deleted file mode 100644 index b670dbdd..00000000 --- a/theories7/Bool/BoolEq.v +++ /dev/null @@ -1,72 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: BoolEq.v,v 1.1.2.1 2004/07/16 19:31:25 herbelin Exp $ i*) -(* Cuihtlauac Alvarado - octobre 2000 *) - -(** Properties of a boolean equality *) - - -Require Export Bool. - -Section Bool_eq_dec. - - Variable A : Set. - - Variable beq : A -> A -> bool. - - Variable beq_refl : (x:A)true=(beq x x). - - Variable beq_eq : (x,y:A)true=(beq x y)->x=y. - - Definition beq_eq_true : (x,y:A)x=y->true=(beq x y). - Proof. - Intros x y H. - Case H. - Apply beq_refl. - Defined. - - Definition beq_eq_not_false : (x,y:A)x=y->~false=(beq x y). - Proof. - Intros x y e. - Rewrite <- beq_eq_true; Trivial; Discriminate. - Defined. - - Definition beq_false_not_eq : (x,y:A)false=(beq x y)->~x=y. - Proof. - Exact [x,y:A; H:(false=(beq x y)); e:(x=y)](beq_eq_not_false x y e H). - Defined. - - Definition exists_beq_eq : (x,y:A){b:bool | b=(beq x y)}. - Proof. - Intros. - Exists (beq x y). - Constructor. - Defined. - - Definition not_eq_false_beq : (x,y:A)~x=y->false=(beq x y). - Proof. - Intros x y H. - Symmetry. - Apply not_true_is_false. - Intro. - Apply H. - Apply beq_eq. - Symmetry. - Assumption. - Defined. - - Definition eq_dec : (x,y:A){x=y}+{~x=y}. - Proof. - Intros x y; Case (exists_beq_eq x y). - Intros b; Case b; Intro H. - Left; Apply beq_eq; Assumption. - Right; Apply beq_false_not_eq; Assumption. - Defined. - -End Bool_eq_dec. |