diff options
Diffstat (limited to 'theories7/Bool/Bool.v')
-rwxr-xr-x | theories7/Bool/Bool.v | 544 |
1 files changed, 544 insertions, 0 deletions
diff --git a/theories7/Bool/Bool.v b/theories7/Bool/Bool.v new file mode 100755 index 00000000..cd75cf30 --- /dev/null +++ b/theories7/Bool/Bool.v @@ -0,0 +1,544 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Bool.v,v 1.2.2.1 2004/07/16 19:31:25 herbelin Exp $ i*) + +(** Booleans *) + +(** The type [bool] is defined in the prelude as + [Inductive bool : Set := true : bool | false : bool] *) + +(** Interpretation of booleans as Proposition *) +Definition Is_true := [b:bool](Cases b of + true => True + | false => False + end). +Hints Unfold Is_true : bool. + +Lemma Is_true_eq_left : (x:bool)x=true -> (Is_true x). +Proof. + Intros; Rewrite H; Auto with bool. +Qed. + +Lemma Is_true_eq_right : (x:bool)true=x -> (Is_true x). +Proof. + Intros; Rewrite <- H; Auto with bool. +Qed. + +Hints Immediate Is_true_eq_right Is_true_eq_left : bool. + +(*******************) +(** Discrimination *) +(*******************) + +Lemma diff_true_false : ~true=false. +Proof. +Unfold not; Intro contr; Change (Is_true false). +Elim contr; Simpl; Trivial with bool. +Qed. +Hints Resolve diff_true_false : bool v62. + +Lemma diff_false_true : ~false=true. +Proof. +Red; Intros H; Apply diff_true_false. +Symmetry. +Assumption. +Qed. +Hints Resolve diff_false_true : bool v62. + +Lemma eq_true_false_abs : (b:bool)(b=true)->(b=false)->False. +Intros b H; Rewrite H; Auto with bool. +Qed. +Hints Resolve eq_true_false_abs : bool. + +Lemma not_true_is_false : (b:bool)~b=true->b=false. +NewDestruct b. +Intros. +Red in H; Elim H. +Reflexivity. +Intros abs. +Reflexivity. +Qed. + +Lemma not_false_is_true : (b:bool)~b=false->b=true. +NewDestruct b. +Intros. +Reflexivity. +Intro H; Red in H; Elim H. +Reflexivity. +Qed. + +(**********************) +(** Order on booleans *) +(**********************) + +Definition leb := [b1,b2:bool] + Cases b1 of + | true => b2=true + | false => True + end. +Hints Unfold leb : bool v62. + +(*************) +(** Equality *) +(*************) + +Definition eqb : bool->bool->bool := + [b1,b2:bool] + Cases b1 b2 of + true true => true + | true false => false + | false true => false + | false false => true + end. + +Lemma eqb_refl : (x:bool)(Is_true (eqb x x)). +NewDestruct x; Simpl; Auto with bool. +Qed. + +Lemma eqb_eq : (x,y:bool)(Is_true (eqb x y))->x=y. +NewDestruct x; NewDestruct y; Simpl; Tauto. +Qed. + +Lemma Is_true_eq_true : (x:bool) (Is_true x) -> x=true. +NewDestruct x; Simpl; Tauto. +Qed. + +Lemma Is_true_eq_true2 : (x:bool) x=true -> (Is_true x). +NewDestruct x; Simpl; Auto with bool. +Qed. + +Lemma eqb_subst : + (P:bool->Prop)(b1,b2:bool)(eqb b1 b2)=true->(P b1)->(P b2). +Unfold eqb . +Intros P b1. +Intros b2. +Case b1. +Case b2. +Trivial with bool. +Intros H. +Inversion_clear H. +Case b2. +Intros H. +Inversion_clear H. +Trivial with bool. +Qed. + +Lemma eqb_reflx : (b:bool)(eqb b b)=true. +Intro b. +Case b. +Trivial with bool. +Trivial with bool. +Qed. + +Lemma eqb_prop : (a,b:bool)(eqb a b)=true -> a=b. +NewDestruct a; NewDestruct b; Simpl; Intro; + Discriminate H Orelse Reflexivity. +Qed. + + +(************************) +(** Logical combinators *) +(************************) + +Definition ifb : bool -> bool -> bool -> bool + := [b1,b2,b3:bool](Cases b1 of true => b2 | false => b3 end). + +Definition andb : bool -> bool -> bool + := [b1,b2:bool](ifb b1 b2 false). + +Definition orb : bool -> bool -> bool + := [b1,b2:bool](ifb b1 true b2). + +Definition implb : bool -> bool -> bool + := [b1,b2:bool](ifb b1 b2 true). + +Definition xorb : bool -> bool -> bool + := [b1,b2:bool] + Cases b1 b2 of + true true => false + | true false => true + | false true => true + | false false => false + end. + +Definition negb := [b:bool]Cases b of + true => false + | false => true + end. + +Infix "||" orb (at level 4, left associativity) : bool_scope. +Infix "&&" andb (at level 3, no associativity) : bool_scope + V8only (at level 40, left associativity). + +Open Scope bool_scope. + +Delimits Scope bool_scope with bool. + +Bind Scope bool_scope with bool. + +(**************************) +(** Lemmas about [negb] *) +(**************************) + +Lemma negb_intro : (b:bool)b=(negb (negb b)). +Proof. +NewDestruct b; Reflexivity. +Qed. + +Lemma negb_elim : (b:bool)(negb (negb b))=b. +Proof. +NewDestruct b; Reflexivity. +Qed. + +Lemma negb_orb : (b1,b2:bool) + (negb (orb b1 b2)) = (andb (negb b1) (negb b2)). +Proof. + NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. +Qed. + +Lemma negb_andb : (b1,b2:bool) + (negb (andb b1 b2)) = (orb (negb b1) (negb b2)). +Proof. + NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. +Qed. + +Lemma negb_sym : (b,b':bool)(b'=(negb b))->(b=(negb b')). +Proof. +NewDestruct b; NewDestruct b'; Intros; Simpl; Trivial with bool. +Qed. + +Lemma no_fixpoint_negb : (b:bool)~(negb b)=b. +Proof. +NewDestruct b; Simpl; Intro; Apply diff_true_false; Auto with bool. +Qed. + +Lemma eqb_negb1 : (b:bool)(eqb (negb b) b)=false. +NewDestruct b. +Trivial with bool. +Trivial with bool. +Qed. + +Lemma eqb_negb2 : (b:bool)(eqb b (negb b))=false. +NewDestruct b. +Trivial with bool. +Trivial with bool. +Qed. + + +Lemma if_negb : (A:Set) (b:bool) (x,y:A) (if (negb b) then x else y)=(if b then y else x). +Proof. + NewDestruct b;Trivial. +Qed. + + +(****************************) +(** A few lemmas about [or] *) +(****************************) + +Lemma orb_prop : + (a,b:bool)(orb a b)=true -> (a = true)\/(b = true). +NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool. +Qed. + +Lemma orb_prop2 : + (a,b:bool)(Is_true (orb a b)) -> (Is_true a)\/(Is_true b). +NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool. +Qed. + +Lemma orb_true_intro + : (b1,b2:bool)(b1=true)\/(b2=true)->(orb b1 b2)=true. +NewDestruct b1; Auto with bool. +NewDestruct 1; Intros. +Elim diff_true_false; Auto with bool. +Rewrite H; Trivial with bool. +Qed. +Hints Resolve orb_true_intro : bool v62. + +Lemma orb_b_true : (b:bool)(orb b true)=true. +Auto with bool. +Qed. +Hints Resolve orb_b_true : bool v62. + +Lemma orb_true_b : (b:bool)(orb true b)=true. +Trivial with bool. +Qed. + +Definition orb_true_elim : (b1,b2:bool)(orb b1 b2)=true -> {b1=true}+{b2=true}. +NewDestruct b1; Simpl; Auto with bool. +Defined. + +Lemma orb_false_intro + : (b1,b2:bool)(b1=false)->(b2=false)->(orb b1 b2)=false. +Intros b1 b2 H1 H2; Rewrite H1; Rewrite H2; Trivial with bool. +Qed. +Hints Resolve orb_false_intro : bool v62. + +Lemma orb_b_false : (b:bool)(orb b false)=b. +Proof. + NewDestruct b; Trivial with bool. +Qed. +Hints Resolve orb_b_false : bool v62. + +Lemma orb_false_b : (b:bool)(orb false b)=b. +Proof. + NewDestruct b; Trivial with bool. +Qed. +Hints Resolve orb_false_b : bool v62. + +Lemma orb_false_elim : + (b1,b2:bool)(orb b1 b2)=false -> (b1=false)/\(b2=false). +Proof. + NewDestruct b1. + Intros; Elim diff_true_false; Auto with bool. + NewDestruct b2. + Intros; Elim diff_true_false; Auto with bool. + Auto with bool. +Qed. + +Lemma orb_neg_b : + (b:bool)(orb b (negb b))=true. +Proof. + NewDestruct b; Reflexivity. +Qed. +Hints Resolve orb_neg_b : bool v62. + +Lemma orb_sym : (b1,b2:bool)(orb b1 b2)=(orb b2 b1). +NewDestruct b1; NewDestruct b2; Reflexivity. +Qed. + +Lemma orb_assoc : (b1,b2,b3:bool)(orb b1 (orb b2 b3))=(orb (orb b1 b2) b3). +Proof. + NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. +Qed. + +Hints Resolve orb_sym orb_assoc orb_b_false orb_false_b : bool v62. + +(*****************************) +(** A few lemmas about [and] *) +(*****************************) + +Lemma andb_prop : + (a,b:bool)(andb a b) = true -> (a = true)/\(b = true). + +Proof. + NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); + Auto with bool. +Qed. +Hints Resolve andb_prop : bool v62. + +Definition andb_true_eq : (a,b:bool) true = (andb a b) -> true = a /\ true = b. +Proof. + NewDestruct a; NewDestruct b; Auto. +Defined. + +Lemma andb_prop2 : + (a,b:bool)(Is_true (andb a b)) -> (Is_true a)/\(Is_true b). +Proof. + NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); + Auto with bool. +Qed. +Hints Resolve andb_prop2 : bool v62. + +Lemma andb_true_intro : (b1,b2:bool)(b1=true)/\(b2=true)->(andb b1 b2)=true. +Proof. + NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. +Qed. +Hints Resolve andb_true_intro : bool v62. + +Lemma andb_true_intro2 : + (b1,b2:bool)(Is_true b1)->(Is_true b2)->(Is_true (andb b1 b2)). +Proof. + NewDestruct b1; NewDestruct b2; Simpl; Tauto. +Qed. +Hints Resolve andb_true_intro2 : bool v62. + +Lemma andb_false_intro1 + : (b1,b2:bool)(b1=false)->(andb b1 b2)=false. +NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. +Qed. + +Lemma andb_false_intro2 + : (b1,b2:bool)(b2=false)->(andb b1 b2)=false. +NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. +Qed. + +Lemma andb_b_false : (b:bool)(andb b false)=false. +NewDestruct b; Auto with bool. +Qed. + +Lemma andb_false_b : (b:bool)(andb false b)=false. +Trivial with bool. +Qed. + +Lemma andb_b_true : (b:bool)(andb b true)=b. +NewDestruct b; Auto with bool. +Qed. + +Lemma andb_true_b : (b:bool)(andb true b)=b. +Trivial with bool. +Qed. + +Definition andb_false_elim : + (b1,b2:bool)(andb b1 b2)=false -> {b1=false}+{b2=false}. +NewDestruct b1; Simpl; Auto with bool. +Defined. +Hints Resolve andb_false_elim : bool v62. + +Lemma andb_neg_b : + (b:bool)(andb b (negb b))=false. +NewDestruct b; Reflexivity. +Qed. +Hints Resolve andb_neg_b : bool v62. + +Lemma andb_sym : (b1,b2:bool)(andb b1 b2)=(andb b2 b1). +NewDestruct b1; NewDestruct b2; Reflexivity. +Qed. + +Lemma andb_assoc : (b1,b2,b3:bool)(andb b1 (andb b2 b3))=(andb (andb b1 b2) b3). +NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. +Qed. + +Hints Resolve andb_sym andb_assoc : bool v62. + +(*******************************) +(** Properties of [xorb] *) +(*******************************) + +Lemma xorb_false : (b:bool) (xorb b false)=b. +Proof. + NewDestruct b; Trivial. +Qed. + +Lemma false_xorb : (b:bool) (xorb false b)=b. +Proof. + NewDestruct b; Trivial. +Qed. + +Lemma xorb_true : (b:bool) (xorb b true)=(negb b). +Proof. + Trivial. +Qed. + +Lemma true_xorb : (b:bool) (xorb true b)=(negb b). +Proof. + NewDestruct b; Trivial. +Qed. + +Lemma xorb_nilpotent : (b:bool) (xorb b b)=false. +Proof. + NewDestruct b; Trivial. +Qed. + +Lemma xorb_comm : (b,b':bool) (xorb b b')=(xorb b' b). +Proof. + NewDestruct b; NewDestruct b'; Trivial. +Qed. + +Lemma xorb_assoc : (b,b',b'':bool) (xorb (xorb b b') b'')=(xorb b (xorb b' b'')). +Proof. + NewDestruct b; NewDestruct b'; NewDestruct b''; Trivial. +Qed. + +Lemma xorb_eq : (b,b':bool) (xorb b b')=false -> b=b'. +Proof. + NewDestruct b; NewDestruct b'; Trivial. + Unfold xorb. Intros. Rewrite H. Reflexivity. +Qed. + +Lemma xorb_move_l_r_1 : (b,b',b'':bool) (xorb b b')=b'' -> b'=(xorb b b''). +Proof. + Intros. Rewrite <- (false_xorb b'). Rewrite <- (xorb_nilpotent b). Rewrite xorb_assoc. + Rewrite H. Reflexivity. +Qed. + +Lemma xorb_move_l_r_2 : (b,b',b'':bool) (xorb b b')=b'' -> b=(xorb b'' b'). +Proof. + Intros. Rewrite xorb_comm in H. Rewrite (xorb_move_l_r_1 b' b b'' H). Apply xorb_comm. +Qed. + +Lemma xorb_move_r_l_1 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b' b)=b''. +Proof. + Intros. Rewrite H. Rewrite <- xorb_assoc. Rewrite xorb_nilpotent. Apply false_xorb. +Qed. + +Lemma xorb_move_r_l_2 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b b'')=b'. +Proof. + Intros. Rewrite H. Rewrite xorb_assoc. Rewrite xorb_nilpotent. Apply xorb_false. +Qed. + +(*******************************) +(** De Morgan's law *) +(*******************************) + +Lemma demorgan1 : (b1,b2,b3:bool) + (andb b1 (orb b2 b3)) = (orb (andb b1 b2) (andb b1 b3)). +NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. +Qed. + +Lemma demorgan2 : (b1,b2,b3:bool) + (andb (orb b1 b2) b3) = (orb (andb b1 b3) (andb b2 b3)). +NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. +Qed. + +Lemma demorgan3 : (b1,b2,b3:bool) + (orb b1 (andb b2 b3)) = (andb (orb b1 b2) (orb b1 b3)). +NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. +Qed. + +Lemma demorgan4 : (b1,b2,b3:bool) + (orb (andb b1 b2) b3) = (andb (orb b1 b3) (orb b2 b3)). +NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. +Qed. + +Lemma absoption_andb : (b1,b2:bool) + (andb b1 (orb b1 b2)) = b1. +Proof. + NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. +Qed. + +Lemma absoption_orb : (b1,b2:bool) + (orb b1 (andb b1 b2)) = b1. +Proof. + NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. +Qed. + + +(** Misc. equalities between booleans (to be used by Auto) *) + +Lemma bool_1 : (b1,b2:bool)(b1=true <-> b2=true) -> b1=b2. +Proof. + Intros b1 b2; Case b1; Case b2; Intuition. +Qed. + +Lemma bool_2 : (b1,b2:bool)b1=b2 -> b1=true -> b2=true. +Proof. + Intros b1 b2; Case b1; Case b2; Intuition. +Qed. + +Lemma bool_3 : (b:bool) ~(negb b)=true -> b=true. +Proof. + NewDestruct b; Intuition. +Qed. + +Lemma bool_4 : (b:bool) b=true -> ~(negb b)=true. +Proof. + NewDestruct b; Intuition. +Qed. + +Lemma bool_5 : (b:bool) (negb b)=true -> ~b=true. +Proof. + NewDestruct b; Intuition. +Qed. + +Lemma bool_6 : (b:bool) ~b=true -> (negb b)=true. +Proof. + NewDestruct b; Intuition. +Qed. + +Hints Resolve bool_1 bool_2 bool_3 bool_4 bool_5 bool_6. |