summaryrefslogtreecommitdiff
path: root/theories7/Bool/Bool.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Bool/Bool.v')
-rwxr-xr-xtheories7/Bool/Bool.v544
1 files changed, 544 insertions, 0 deletions
diff --git a/theories7/Bool/Bool.v b/theories7/Bool/Bool.v
new file mode 100755
index 00000000..cd75cf30
--- /dev/null
+++ b/theories7/Bool/Bool.v
@@ -0,0 +1,544 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Bool.v,v 1.2.2.1 2004/07/16 19:31:25 herbelin Exp $ i*)
+
+(** Booleans *)
+
+(** The type [bool] is defined in the prelude as
+ [Inductive bool : Set := true : bool | false : bool] *)
+
+(** Interpretation of booleans as Proposition *)
+Definition Is_true := [b:bool](Cases b of
+ true => True
+ | false => False
+ end).
+Hints Unfold Is_true : bool.
+
+Lemma Is_true_eq_left : (x:bool)x=true -> (Is_true x).
+Proof.
+ Intros; Rewrite H; Auto with bool.
+Qed.
+
+Lemma Is_true_eq_right : (x:bool)true=x -> (Is_true x).
+Proof.
+ Intros; Rewrite <- H; Auto with bool.
+Qed.
+
+Hints Immediate Is_true_eq_right Is_true_eq_left : bool.
+
+(*******************)
+(** Discrimination *)
+(*******************)
+
+Lemma diff_true_false : ~true=false.
+Proof.
+Unfold not; Intro contr; Change (Is_true false).
+Elim contr; Simpl; Trivial with bool.
+Qed.
+Hints Resolve diff_true_false : bool v62.
+
+Lemma diff_false_true : ~false=true.
+Proof.
+Red; Intros H; Apply diff_true_false.
+Symmetry.
+Assumption.
+Qed.
+Hints Resolve diff_false_true : bool v62.
+
+Lemma eq_true_false_abs : (b:bool)(b=true)->(b=false)->False.
+Intros b H; Rewrite H; Auto with bool.
+Qed.
+Hints Resolve eq_true_false_abs : bool.
+
+Lemma not_true_is_false : (b:bool)~b=true->b=false.
+NewDestruct b.
+Intros.
+Red in H; Elim H.
+Reflexivity.
+Intros abs.
+Reflexivity.
+Qed.
+
+Lemma not_false_is_true : (b:bool)~b=false->b=true.
+NewDestruct b.
+Intros.
+Reflexivity.
+Intro H; Red in H; Elim H.
+Reflexivity.
+Qed.
+
+(**********************)
+(** Order on booleans *)
+(**********************)
+
+Definition leb := [b1,b2:bool]
+ Cases b1 of
+ | true => b2=true
+ | false => True
+ end.
+Hints Unfold leb : bool v62.
+
+(*************)
+(** Equality *)
+(*************)
+
+Definition eqb : bool->bool->bool :=
+ [b1,b2:bool]
+ Cases b1 b2 of
+ true true => true
+ | true false => false
+ | false true => false
+ | false false => true
+ end.
+
+Lemma eqb_refl : (x:bool)(Is_true (eqb x x)).
+NewDestruct x; Simpl; Auto with bool.
+Qed.
+
+Lemma eqb_eq : (x,y:bool)(Is_true (eqb x y))->x=y.
+NewDestruct x; NewDestruct y; Simpl; Tauto.
+Qed.
+
+Lemma Is_true_eq_true : (x:bool) (Is_true x) -> x=true.
+NewDestruct x; Simpl; Tauto.
+Qed.
+
+Lemma Is_true_eq_true2 : (x:bool) x=true -> (Is_true x).
+NewDestruct x; Simpl; Auto with bool.
+Qed.
+
+Lemma eqb_subst :
+ (P:bool->Prop)(b1,b2:bool)(eqb b1 b2)=true->(P b1)->(P b2).
+Unfold eqb .
+Intros P b1.
+Intros b2.
+Case b1.
+Case b2.
+Trivial with bool.
+Intros H.
+Inversion_clear H.
+Case b2.
+Intros H.
+Inversion_clear H.
+Trivial with bool.
+Qed.
+
+Lemma eqb_reflx : (b:bool)(eqb b b)=true.
+Intro b.
+Case b.
+Trivial with bool.
+Trivial with bool.
+Qed.
+
+Lemma eqb_prop : (a,b:bool)(eqb a b)=true -> a=b.
+NewDestruct a; NewDestruct b; Simpl; Intro;
+ Discriminate H Orelse Reflexivity.
+Qed.
+
+
+(************************)
+(** Logical combinators *)
+(************************)
+
+Definition ifb : bool -> bool -> bool -> bool
+ := [b1,b2,b3:bool](Cases b1 of true => b2 | false => b3 end).
+
+Definition andb : bool -> bool -> bool
+ := [b1,b2:bool](ifb b1 b2 false).
+
+Definition orb : bool -> bool -> bool
+ := [b1,b2:bool](ifb b1 true b2).
+
+Definition implb : bool -> bool -> bool
+ := [b1,b2:bool](ifb b1 b2 true).
+
+Definition xorb : bool -> bool -> bool
+ := [b1,b2:bool]
+ Cases b1 b2 of
+ true true => false
+ | true false => true
+ | false true => true
+ | false false => false
+ end.
+
+Definition negb := [b:bool]Cases b of
+ true => false
+ | false => true
+ end.
+
+Infix "||" orb (at level 4, left associativity) : bool_scope.
+Infix "&&" andb (at level 3, no associativity) : bool_scope
+ V8only (at level 40, left associativity).
+
+Open Scope bool_scope.
+
+Delimits Scope bool_scope with bool.
+
+Bind Scope bool_scope with bool.
+
+(**************************)
+(** Lemmas about [negb] *)
+(**************************)
+
+Lemma negb_intro : (b:bool)b=(negb (negb b)).
+Proof.
+NewDestruct b; Reflexivity.
+Qed.
+
+Lemma negb_elim : (b:bool)(negb (negb b))=b.
+Proof.
+NewDestruct b; Reflexivity.
+Qed.
+
+Lemma negb_orb : (b1,b2:bool)
+ (negb (orb b1 b2)) = (andb (negb b1) (negb b2)).
+Proof.
+ NewDestruct b1; NewDestruct b2; Simpl; Reflexivity.
+Qed.
+
+Lemma negb_andb : (b1,b2:bool)
+ (negb (andb b1 b2)) = (orb (negb b1) (negb b2)).
+Proof.
+ NewDestruct b1; NewDestruct b2; Simpl; Reflexivity.
+Qed.
+
+Lemma negb_sym : (b,b':bool)(b'=(negb b))->(b=(negb b')).
+Proof.
+NewDestruct b; NewDestruct b'; Intros; Simpl; Trivial with bool.
+Qed.
+
+Lemma no_fixpoint_negb : (b:bool)~(negb b)=b.
+Proof.
+NewDestruct b; Simpl; Intro; Apply diff_true_false; Auto with bool.
+Qed.
+
+Lemma eqb_negb1 : (b:bool)(eqb (negb b) b)=false.
+NewDestruct b.
+Trivial with bool.
+Trivial with bool.
+Qed.
+
+Lemma eqb_negb2 : (b:bool)(eqb b (negb b))=false.
+NewDestruct b.
+Trivial with bool.
+Trivial with bool.
+Qed.
+
+
+Lemma if_negb : (A:Set) (b:bool) (x,y:A) (if (negb b) then x else y)=(if b then y else x).
+Proof.
+ NewDestruct b;Trivial.
+Qed.
+
+
+(****************************)
+(** A few lemmas about [or] *)
+(****************************)
+
+Lemma orb_prop :
+ (a,b:bool)(orb a b)=true -> (a = true)\/(b = true).
+NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool.
+Qed.
+
+Lemma orb_prop2 :
+ (a,b:bool)(Is_true (orb a b)) -> (Is_true a)\/(Is_true b).
+NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool.
+Qed.
+
+Lemma orb_true_intro
+ : (b1,b2:bool)(b1=true)\/(b2=true)->(orb b1 b2)=true.
+NewDestruct b1; Auto with bool.
+NewDestruct 1; Intros.
+Elim diff_true_false; Auto with bool.
+Rewrite H; Trivial with bool.
+Qed.
+Hints Resolve orb_true_intro : bool v62.
+
+Lemma orb_b_true : (b:bool)(orb b true)=true.
+Auto with bool.
+Qed.
+Hints Resolve orb_b_true : bool v62.
+
+Lemma orb_true_b : (b:bool)(orb true b)=true.
+Trivial with bool.
+Qed.
+
+Definition orb_true_elim : (b1,b2:bool)(orb b1 b2)=true -> {b1=true}+{b2=true}.
+NewDestruct b1; Simpl; Auto with bool.
+Defined.
+
+Lemma orb_false_intro
+ : (b1,b2:bool)(b1=false)->(b2=false)->(orb b1 b2)=false.
+Intros b1 b2 H1 H2; Rewrite H1; Rewrite H2; Trivial with bool.
+Qed.
+Hints Resolve orb_false_intro : bool v62.
+
+Lemma orb_b_false : (b:bool)(orb b false)=b.
+Proof.
+ NewDestruct b; Trivial with bool.
+Qed.
+Hints Resolve orb_b_false : bool v62.
+
+Lemma orb_false_b : (b:bool)(orb false b)=b.
+Proof.
+ NewDestruct b; Trivial with bool.
+Qed.
+Hints Resolve orb_false_b : bool v62.
+
+Lemma orb_false_elim :
+ (b1,b2:bool)(orb b1 b2)=false -> (b1=false)/\(b2=false).
+Proof.
+ NewDestruct b1.
+ Intros; Elim diff_true_false; Auto with bool.
+ NewDestruct b2.
+ Intros; Elim diff_true_false; Auto with bool.
+ Auto with bool.
+Qed.
+
+Lemma orb_neg_b :
+ (b:bool)(orb b (negb b))=true.
+Proof.
+ NewDestruct b; Reflexivity.
+Qed.
+Hints Resolve orb_neg_b : bool v62.
+
+Lemma orb_sym : (b1,b2:bool)(orb b1 b2)=(orb b2 b1).
+NewDestruct b1; NewDestruct b2; Reflexivity.
+Qed.
+
+Lemma orb_assoc : (b1,b2,b3:bool)(orb b1 (orb b2 b3))=(orb (orb b1 b2) b3).
+Proof.
+ NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
+Qed.
+
+Hints Resolve orb_sym orb_assoc orb_b_false orb_false_b : bool v62.
+
+(*****************************)
+(** A few lemmas about [and] *)
+(*****************************)
+
+Lemma andb_prop :
+ (a,b:bool)(andb a b) = true -> (a = true)/\(b = true).
+
+Proof.
+ NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H);
+ Auto with bool.
+Qed.
+Hints Resolve andb_prop : bool v62.
+
+Definition andb_true_eq : (a,b:bool) true = (andb a b) -> true = a /\ true = b.
+Proof.
+ NewDestruct a; NewDestruct b; Auto.
+Defined.
+
+Lemma andb_prop2 :
+ (a,b:bool)(Is_true (andb a b)) -> (Is_true a)/\(Is_true b).
+Proof.
+ NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H);
+ Auto with bool.
+Qed.
+Hints Resolve andb_prop2 : bool v62.
+
+Lemma andb_true_intro : (b1,b2:bool)(b1=true)/\(b2=true)->(andb b1 b2)=true.
+Proof.
+ NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
+Qed.
+Hints Resolve andb_true_intro : bool v62.
+
+Lemma andb_true_intro2 :
+ (b1,b2:bool)(Is_true b1)->(Is_true b2)->(Is_true (andb b1 b2)).
+Proof.
+ NewDestruct b1; NewDestruct b2; Simpl; Tauto.
+Qed.
+Hints Resolve andb_true_intro2 : bool v62.
+
+Lemma andb_false_intro1
+ : (b1,b2:bool)(b1=false)->(andb b1 b2)=false.
+NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
+Qed.
+
+Lemma andb_false_intro2
+ : (b1,b2:bool)(b2=false)->(andb b1 b2)=false.
+NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
+Qed.
+
+Lemma andb_b_false : (b:bool)(andb b false)=false.
+NewDestruct b; Auto with bool.
+Qed.
+
+Lemma andb_false_b : (b:bool)(andb false b)=false.
+Trivial with bool.
+Qed.
+
+Lemma andb_b_true : (b:bool)(andb b true)=b.
+NewDestruct b; Auto with bool.
+Qed.
+
+Lemma andb_true_b : (b:bool)(andb true b)=b.
+Trivial with bool.
+Qed.
+
+Definition andb_false_elim :
+ (b1,b2:bool)(andb b1 b2)=false -> {b1=false}+{b2=false}.
+NewDestruct b1; Simpl; Auto with bool.
+Defined.
+Hints Resolve andb_false_elim : bool v62.
+
+Lemma andb_neg_b :
+ (b:bool)(andb b (negb b))=false.
+NewDestruct b; Reflexivity.
+Qed.
+Hints Resolve andb_neg_b : bool v62.
+
+Lemma andb_sym : (b1,b2:bool)(andb b1 b2)=(andb b2 b1).
+NewDestruct b1; NewDestruct b2; Reflexivity.
+Qed.
+
+Lemma andb_assoc : (b1,b2,b3:bool)(andb b1 (andb b2 b3))=(andb (andb b1 b2) b3).
+NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
+Qed.
+
+Hints Resolve andb_sym andb_assoc : bool v62.
+
+(*******************************)
+(** Properties of [xorb] *)
+(*******************************)
+
+Lemma xorb_false : (b:bool) (xorb b false)=b.
+Proof.
+ NewDestruct b; Trivial.
+Qed.
+
+Lemma false_xorb : (b:bool) (xorb false b)=b.
+Proof.
+ NewDestruct b; Trivial.
+Qed.
+
+Lemma xorb_true : (b:bool) (xorb b true)=(negb b).
+Proof.
+ Trivial.
+Qed.
+
+Lemma true_xorb : (b:bool) (xorb true b)=(negb b).
+Proof.
+ NewDestruct b; Trivial.
+Qed.
+
+Lemma xorb_nilpotent : (b:bool) (xorb b b)=false.
+Proof.
+ NewDestruct b; Trivial.
+Qed.
+
+Lemma xorb_comm : (b,b':bool) (xorb b b')=(xorb b' b).
+Proof.
+ NewDestruct b; NewDestruct b'; Trivial.
+Qed.
+
+Lemma xorb_assoc : (b,b',b'':bool) (xorb (xorb b b') b'')=(xorb b (xorb b' b'')).
+Proof.
+ NewDestruct b; NewDestruct b'; NewDestruct b''; Trivial.
+Qed.
+
+Lemma xorb_eq : (b,b':bool) (xorb b b')=false -> b=b'.
+Proof.
+ NewDestruct b; NewDestruct b'; Trivial.
+ Unfold xorb. Intros. Rewrite H. Reflexivity.
+Qed.
+
+Lemma xorb_move_l_r_1 : (b,b',b'':bool) (xorb b b')=b'' -> b'=(xorb b b'').
+Proof.
+ Intros. Rewrite <- (false_xorb b'). Rewrite <- (xorb_nilpotent b). Rewrite xorb_assoc.
+ Rewrite H. Reflexivity.
+Qed.
+
+Lemma xorb_move_l_r_2 : (b,b',b'':bool) (xorb b b')=b'' -> b=(xorb b'' b').
+Proof.
+ Intros. Rewrite xorb_comm in H. Rewrite (xorb_move_l_r_1 b' b b'' H). Apply xorb_comm.
+Qed.
+
+Lemma xorb_move_r_l_1 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b' b)=b''.
+Proof.
+ Intros. Rewrite H. Rewrite <- xorb_assoc. Rewrite xorb_nilpotent. Apply false_xorb.
+Qed.
+
+Lemma xorb_move_r_l_2 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b b'')=b'.
+Proof.
+ Intros. Rewrite H. Rewrite xorb_assoc. Rewrite xorb_nilpotent. Apply xorb_false.
+Qed.
+
+(*******************************)
+(** De Morgan's law *)
+(*******************************)
+
+Lemma demorgan1 : (b1,b2,b3:bool)
+ (andb b1 (orb b2 b3)) = (orb (andb b1 b2) (andb b1 b3)).
+NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
+Qed.
+
+Lemma demorgan2 : (b1,b2,b3:bool)
+ (andb (orb b1 b2) b3) = (orb (andb b1 b3) (andb b2 b3)).
+NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
+Qed.
+
+Lemma demorgan3 : (b1,b2,b3:bool)
+ (orb b1 (andb b2 b3)) = (andb (orb b1 b2) (orb b1 b3)).
+NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
+Qed.
+
+Lemma demorgan4 : (b1,b2,b3:bool)
+ (orb (andb b1 b2) b3) = (andb (orb b1 b3) (orb b2 b3)).
+NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
+Qed.
+
+Lemma absoption_andb : (b1,b2:bool)
+ (andb b1 (orb b1 b2)) = b1.
+Proof.
+ NewDestruct b1; NewDestruct b2; Simpl; Reflexivity.
+Qed.
+
+Lemma absoption_orb : (b1,b2:bool)
+ (orb b1 (andb b1 b2)) = b1.
+Proof.
+ NewDestruct b1; NewDestruct b2; Simpl; Reflexivity.
+Qed.
+
+
+(** Misc. equalities between booleans (to be used by Auto) *)
+
+Lemma bool_1 : (b1,b2:bool)(b1=true <-> b2=true) -> b1=b2.
+Proof.
+ Intros b1 b2; Case b1; Case b2; Intuition.
+Qed.
+
+Lemma bool_2 : (b1,b2:bool)b1=b2 -> b1=true -> b2=true.
+Proof.
+ Intros b1 b2; Case b1; Case b2; Intuition.
+Qed.
+
+Lemma bool_3 : (b:bool) ~(negb b)=true -> b=true.
+Proof.
+ NewDestruct b; Intuition.
+Qed.
+
+Lemma bool_4 : (b:bool) b=true -> ~(negb b)=true.
+Proof.
+ NewDestruct b; Intuition.
+Qed.
+
+Lemma bool_5 : (b:bool) (negb b)=true -> ~b=true.
+Proof.
+ NewDestruct b; Intuition.
+Qed.
+
+Lemma bool_6 : (b:bool) ~b=true -> (negb b)=true.
+Proof.
+ NewDestruct b; Intuition.
+Qed.
+
+Hints Resolve bool_1 bool_2 bool_3 bool_4 bool_5 bool_6.