diff options
Diffstat (limited to 'theories7/Bool/Bool.v')
-rwxr-xr-x | theories7/Bool/Bool.v | 544 |
1 files changed, 0 insertions, 544 deletions
diff --git a/theories7/Bool/Bool.v b/theories7/Bool/Bool.v deleted file mode 100755 index cd75cf30..00000000 --- a/theories7/Bool/Bool.v +++ /dev/null @@ -1,544 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Bool.v,v 1.2.2.1 2004/07/16 19:31:25 herbelin Exp $ i*) - -(** Booleans *) - -(** The type [bool] is defined in the prelude as - [Inductive bool : Set := true : bool | false : bool] *) - -(** Interpretation of booleans as Proposition *) -Definition Is_true := [b:bool](Cases b of - true => True - | false => False - end). -Hints Unfold Is_true : bool. - -Lemma Is_true_eq_left : (x:bool)x=true -> (Is_true x). -Proof. - Intros; Rewrite H; Auto with bool. -Qed. - -Lemma Is_true_eq_right : (x:bool)true=x -> (Is_true x). -Proof. - Intros; Rewrite <- H; Auto with bool. -Qed. - -Hints Immediate Is_true_eq_right Is_true_eq_left : bool. - -(*******************) -(** Discrimination *) -(*******************) - -Lemma diff_true_false : ~true=false. -Proof. -Unfold not; Intro contr; Change (Is_true false). -Elim contr; Simpl; Trivial with bool. -Qed. -Hints Resolve diff_true_false : bool v62. - -Lemma diff_false_true : ~false=true. -Proof. -Red; Intros H; Apply diff_true_false. -Symmetry. -Assumption. -Qed. -Hints Resolve diff_false_true : bool v62. - -Lemma eq_true_false_abs : (b:bool)(b=true)->(b=false)->False. -Intros b H; Rewrite H; Auto with bool. -Qed. -Hints Resolve eq_true_false_abs : bool. - -Lemma not_true_is_false : (b:bool)~b=true->b=false. -NewDestruct b. -Intros. -Red in H; Elim H. -Reflexivity. -Intros abs. -Reflexivity. -Qed. - -Lemma not_false_is_true : (b:bool)~b=false->b=true. -NewDestruct b. -Intros. -Reflexivity. -Intro H; Red in H; Elim H. -Reflexivity. -Qed. - -(**********************) -(** Order on booleans *) -(**********************) - -Definition leb := [b1,b2:bool] - Cases b1 of - | true => b2=true - | false => True - end. -Hints Unfold leb : bool v62. - -(*************) -(** Equality *) -(*************) - -Definition eqb : bool->bool->bool := - [b1,b2:bool] - Cases b1 b2 of - true true => true - | true false => false - | false true => false - | false false => true - end. - -Lemma eqb_refl : (x:bool)(Is_true (eqb x x)). -NewDestruct x; Simpl; Auto with bool. -Qed. - -Lemma eqb_eq : (x,y:bool)(Is_true (eqb x y))->x=y. -NewDestruct x; NewDestruct y; Simpl; Tauto. -Qed. - -Lemma Is_true_eq_true : (x:bool) (Is_true x) -> x=true. -NewDestruct x; Simpl; Tauto. -Qed. - -Lemma Is_true_eq_true2 : (x:bool) x=true -> (Is_true x). -NewDestruct x; Simpl; Auto with bool. -Qed. - -Lemma eqb_subst : - (P:bool->Prop)(b1,b2:bool)(eqb b1 b2)=true->(P b1)->(P b2). -Unfold eqb . -Intros P b1. -Intros b2. -Case b1. -Case b2. -Trivial with bool. -Intros H. -Inversion_clear H. -Case b2. -Intros H. -Inversion_clear H. -Trivial with bool. -Qed. - -Lemma eqb_reflx : (b:bool)(eqb b b)=true. -Intro b. -Case b. -Trivial with bool. -Trivial with bool. -Qed. - -Lemma eqb_prop : (a,b:bool)(eqb a b)=true -> a=b. -NewDestruct a; NewDestruct b; Simpl; Intro; - Discriminate H Orelse Reflexivity. -Qed. - - -(************************) -(** Logical combinators *) -(************************) - -Definition ifb : bool -> bool -> bool -> bool - := [b1,b2,b3:bool](Cases b1 of true => b2 | false => b3 end). - -Definition andb : bool -> bool -> bool - := [b1,b2:bool](ifb b1 b2 false). - -Definition orb : bool -> bool -> bool - := [b1,b2:bool](ifb b1 true b2). - -Definition implb : bool -> bool -> bool - := [b1,b2:bool](ifb b1 b2 true). - -Definition xorb : bool -> bool -> bool - := [b1,b2:bool] - Cases b1 b2 of - true true => false - | true false => true - | false true => true - | false false => false - end. - -Definition negb := [b:bool]Cases b of - true => false - | false => true - end. - -Infix "||" orb (at level 4, left associativity) : bool_scope. -Infix "&&" andb (at level 3, no associativity) : bool_scope - V8only (at level 40, left associativity). - -Open Scope bool_scope. - -Delimits Scope bool_scope with bool. - -Bind Scope bool_scope with bool. - -(**************************) -(** Lemmas about [negb] *) -(**************************) - -Lemma negb_intro : (b:bool)b=(negb (negb b)). -Proof. -NewDestruct b; Reflexivity. -Qed. - -Lemma negb_elim : (b:bool)(negb (negb b))=b. -Proof. -NewDestruct b; Reflexivity. -Qed. - -Lemma negb_orb : (b1,b2:bool) - (negb (orb b1 b2)) = (andb (negb b1) (negb b2)). -Proof. - NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. -Qed. - -Lemma negb_andb : (b1,b2:bool) - (negb (andb b1 b2)) = (orb (negb b1) (negb b2)). -Proof. - NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. -Qed. - -Lemma negb_sym : (b,b':bool)(b'=(negb b))->(b=(negb b')). -Proof. -NewDestruct b; NewDestruct b'; Intros; Simpl; Trivial with bool. -Qed. - -Lemma no_fixpoint_negb : (b:bool)~(negb b)=b. -Proof. -NewDestruct b; Simpl; Intro; Apply diff_true_false; Auto with bool. -Qed. - -Lemma eqb_negb1 : (b:bool)(eqb (negb b) b)=false. -NewDestruct b. -Trivial with bool. -Trivial with bool. -Qed. - -Lemma eqb_negb2 : (b:bool)(eqb b (negb b))=false. -NewDestruct b. -Trivial with bool. -Trivial with bool. -Qed. - - -Lemma if_negb : (A:Set) (b:bool) (x,y:A) (if (negb b) then x else y)=(if b then y else x). -Proof. - NewDestruct b;Trivial. -Qed. - - -(****************************) -(** A few lemmas about [or] *) -(****************************) - -Lemma orb_prop : - (a,b:bool)(orb a b)=true -> (a = true)\/(b = true). -NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool. -Qed. - -Lemma orb_prop2 : - (a,b:bool)(Is_true (orb a b)) -> (Is_true a)\/(Is_true b). -NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool. -Qed. - -Lemma orb_true_intro - : (b1,b2:bool)(b1=true)\/(b2=true)->(orb b1 b2)=true. -NewDestruct b1; Auto with bool. -NewDestruct 1; Intros. -Elim diff_true_false; Auto with bool. -Rewrite H; Trivial with bool. -Qed. -Hints Resolve orb_true_intro : bool v62. - -Lemma orb_b_true : (b:bool)(orb b true)=true. -Auto with bool. -Qed. -Hints Resolve orb_b_true : bool v62. - -Lemma orb_true_b : (b:bool)(orb true b)=true. -Trivial with bool. -Qed. - -Definition orb_true_elim : (b1,b2:bool)(orb b1 b2)=true -> {b1=true}+{b2=true}. -NewDestruct b1; Simpl; Auto with bool. -Defined. - -Lemma orb_false_intro - : (b1,b2:bool)(b1=false)->(b2=false)->(orb b1 b2)=false. -Intros b1 b2 H1 H2; Rewrite H1; Rewrite H2; Trivial with bool. -Qed. -Hints Resolve orb_false_intro : bool v62. - -Lemma orb_b_false : (b:bool)(orb b false)=b. -Proof. - NewDestruct b; Trivial with bool. -Qed. -Hints Resolve orb_b_false : bool v62. - -Lemma orb_false_b : (b:bool)(orb false b)=b. -Proof. - NewDestruct b; Trivial with bool. -Qed. -Hints Resolve orb_false_b : bool v62. - -Lemma orb_false_elim : - (b1,b2:bool)(orb b1 b2)=false -> (b1=false)/\(b2=false). -Proof. - NewDestruct b1. - Intros; Elim diff_true_false; Auto with bool. - NewDestruct b2. - Intros; Elim diff_true_false; Auto with bool. - Auto with bool. -Qed. - -Lemma orb_neg_b : - (b:bool)(orb b (negb b))=true. -Proof. - NewDestruct b; Reflexivity. -Qed. -Hints Resolve orb_neg_b : bool v62. - -Lemma orb_sym : (b1,b2:bool)(orb b1 b2)=(orb b2 b1). -NewDestruct b1; NewDestruct b2; Reflexivity. -Qed. - -Lemma orb_assoc : (b1,b2,b3:bool)(orb b1 (orb b2 b3))=(orb (orb b1 b2) b3). -Proof. - NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. -Qed. - -Hints Resolve orb_sym orb_assoc orb_b_false orb_false_b : bool v62. - -(*****************************) -(** A few lemmas about [and] *) -(*****************************) - -Lemma andb_prop : - (a,b:bool)(andb a b) = true -> (a = true)/\(b = true). - -Proof. - NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); - Auto with bool. -Qed. -Hints Resolve andb_prop : bool v62. - -Definition andb_true_eq : (a,b:bool) true = (andb a b) -> true = a /\ true = b. -Proof. - NewDestruct a; NewDestruct b; Auto. -Defined. - -Lemma andb_prop2 : - (a,b:bool)(Is_true (andb a b)) -> (Is_true a)/\(Is_true b). -Proof. - NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); - Auto with bool. -Qed. -Hints Resolve andb_prop2 : bool v62. - -Lemma andb_true_intro : (b1,b2:bool)(b1=true)/\(b2=true)->(andb b1 b2)=true. -Proof. - NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. -Qed. -Hints Resolve andb_true_intro : bool v62. - -Lemma andb_true_intro2 : - (b1,b2:bool)(Is_true b1)->(Is_true b2)->(Is_true (andb b1 b2)). -Proof. - NewDestruct b1; NewDestruct b2; Simpl; Tauto. -Qed. -Hints Resolve andb_true_intro2 : bool v62. - -Lemma andb_false_intro1 - : (b1,b2:bool)(b1=false)->(andb b1 b2)=false. -NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. -Qed. - -Lemma andb_false_intro2 - : (b1,b2:bool)(b2=false)->(andb b1 b2)=false. -NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool. -Qed. - -Lemma andb_b_false : (b:bool)(andb b false)=false. -NewDestruct b; Auto with bool. -Qed. - -Lemma andb_false_b : (b:bool)(andb false b)=false. -Trivial with bool. -Qed. - -Lemma andb_b_true : (b:bool)(andb b true)=b. -NewDestruct b; Auto with bool. -Qed. - -Lemma andb_true_b : (b:bool)(andb true b)=b. -Trivial with bool. -Qed. - -Definition andb_false_elim : - (b1,b2:bool)(andb b1 b2)=false -> {b1=false}+{b2=false}. -NewDestruct b1; Simpl; Auto with bool. -Defined. -Hints Resolve andb_false_elim : bool v62. - -Lemma andb_neg_b : - (b:bool)(andb b (negb b))=false. -NewDestruct b; Reflexivity. -Qed. -Hints Resolve andb_neg_b : bool v62. - -Lemma andb_sym : (b1,b2:bool)(andb b1 b2)=(andb b2 b1). -NewDestruct b1; NewDestruct b2; Reflexivity. -Qed. - -Lemma andb_assoc : (b1,b2,b3:bool)(andb b1 (andb b2 b3))=(andb (andb b1 b2) b3). -NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. -Qed. - -Hints Resolve andb_sym andb_assoc : bool v62. - -(*******************************) -(** Properties of [xorb] *) -(*******************************) - -Lemma xorb_false : (b:bool) (xorb b false)=b. -Proof. - NewDestruct b; Trivial. -Qed. - -Lemma false_xorb : (b:bool) (xorb false b)=b. -Proof. - NewDestruct b; Trivial. -Qed. - -Lemma xorb_true : (b:bool) (xorb b true)=(negb b). -Proof. - Trivial. -Qed. - -Lemma true_xorb : (b:bool) (xorb true b)=(negb b). -Proof. - NewDestruct b; Trivial. -Qed. - -Lemma xorb_nilpotent : (b:bool) (xorb b b)=false. -Proof. - NewDestruct b; Trivial. -Qed. - -Lemma xorb_comm : (b,b':bool) (xorb b b')=(xorb b' b). -Proof. - NewDestruct b; NewDestruct b'; Trivial. -Qed. - -Lemma xorb_assoc : (b,b',b'':bool) (xorb (xorb b b') b'')=(xorb b (xorb b' b'')). -Proof. - NewDestruct b; NewDestruct b'; NewDestruct b''; Trivial. -Qed. - -Lemma xorb_eq : (b,b':bool) (xorb b b')=false -> b=b'. -Proof. - NewDestruct b; NewDestruct b'; Trivial. - Unfold xorb. Intros. Rewrite H. Reflexivity. -Qed. - -Lemma xorb_move_l_r_1 : (b,b',b'':bool) (xorb b b')=b'' -> b'=(xorb b b''). -Proof. - Intros. Rewrite <- (false_xorb b'). Rewrite <- (xorb_nilpotent b). Rewrite xorb_assoc. - Rewrite H. Reflexivity. -Qed. - -Lemma xorb_move_l_r_2 : (b,b',b'':bool) (xorb b b')=b'' -> b=(xorb b'' b'). -Proof. - Intros. Rewrite xorb_comm in H. Rewrite (xorb_move_l_r_1 b' b b'' H). Apply xorb_comm. -Qed. - -Lemma xorb_move_r_l_1 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b' b)=b''. -Proof. - Intros. Rewrite H. Rewrite <- xorb_assoc. Rewrite xorb_nilpotent. Apply false_xorb. -Qed. - -Lemma xorb_move_r_l_2 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b b'')=b'. -Proof. - Intros. Rewrite H. Rewrite xorb_assoc. Rewrite xorb_nilpotent. Apply xorb_false. -Qed. - -(*******************************) -(** De Morgan's law *) -(*******************************) - -Lemma demorgan1 : (b1,b2,b3:bool) - (andb b1 (orb b2 b3)) = (orb (andb b1 b2) (andb b1 b3)). -NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. -Qed. - -Lemma demorgan2 : (b1,b2,b3:bool) - (andb (orb b1 b2) b3) = (orb (andb b1 b3) (andb b2 b3)). -NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. -Qed. - -Lemma demorgan3 : (b1,b2,b3:bool) - (orb b1 (andb b2 b3)) = (andb (orb b1 b2) (orb b1 b3)). -NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. -Qed. - -Lemma demorgan4 : (b1,b2,b3:bool) - (orb (andb b1 b2) b3) = (andb (orb b1 b3) (orb b2 b3)). -NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity. -Qed. - -Lemma absoption_andb : (b1,b2:bool) - (andb b1 (orb b1 b2)) = b1. -Proof. - NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. -Qed. - -Lemma absoption_orb : (b1,b2:bool) - (orb b1 (andb b1 b2)) = b1. -Proof. - NewDestruct b1; NewDestruct b2; Simpl; Reflexivity. -Qed. - - -(** Misc. equalities between booleans (to be used by Auto) *) - -Lemma bool_1 : (b1,b2:bool)(b1=true <-> b2=true) -> b1=b2. -Proof. - Intros b1 b2; Case b1; Case b2; Intuition. -Qed. - -Lemma bool_2 : (b1,b2:bool)b1=b2 -> b1=true -> b2=true. -Proof. - Intros b1 b2; Case b1; Case b2; Intuition. -Qed. - -Lemma bool_3 : (b:bool) ~(negb b)=true -> b=true. -Proof. - NewDestruct b; Intuition. -Qed. - -Lemma bool_4 : (b:bool) b=true -> ~(negb b)=true. -Proof. - NewDestruct b; Intuition. -Qed. - -Lemma bool_5 : (b:bool) (negb b)=true -> ~b=true. -Proof. - NewDestruct b; Intuition. -Qed. - -Lemma bool_6 : (b:bool) ~b=true -> (negb b)=true. -Proof. - NewDestruct b; Intuition. -Qed. - -Hints Resolve bool_1 bool_2 bool_3 bool_4 bool_5 bool_6. |