summaryrefslogtreecommitdiff
path: root/theories7/Bool/Bool.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Bool/Bool.v')
-rwxr-xr-xtheories7/Bool/Bool.v544
1 files changed, 0 insertions, 544 deletions
diff --git a/theories7/Bool/Bool.v b/theories7/Bool/Bool.v
deleted file mode 100755
index cd75cf30..00000000
--- a/theories7/Bool/Bool.v
+++ /dev/null
@@ -1,544 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Bool.v,v 1.2.2.1 2004/07/16 19:31:25 herbelin Exp $ i*)
-
-(** Booleans *)
-
-(** The type [bool] is defined in the prelude as
- [Inductive bool : Set := true : bool | false : bool] *)
-
-(** Interpretation of booleans as Proposition *)
-Definition Is_true := [b:bool](Cases b of
- true => True
- | false => False
- end).
-Hints Unfold Is_true : bool.
-
-Lemma Is_true_eq_left : (x:bool)x=true -> (Is_true x).
-Proof.
- Intros; Rewrite H; Auto with bool.
-Qed.
-
-Lemma Is_true_eq_right : (x:bool)true=x -> (Is_true x).
-Proof.
- Intros; Rewrite <- H; Auto with bool.
-Qed.
-
-Hints Immediate Is_true_eq_right Is_true_eq_left : bool.
-
-(*******************)
-(** Discrimination *)
-(*******************)
-
-Lemma diff_true_false : ~true=false.
-Proof.
-Unfold not; Intro contr; Change (Is_true false).
-Elim contr; Simpl; Trivial with bool.
-Qed.
-Hints Resolve diff_true_false : bool v62.
-
-Lemma diff_false_true : ~false=true.
-Proof.
-Red; Intros H; Apply diff_true_false.
-Symmetry.
-Assumption.
-Qed.
-Hints Resolve diff_false_true : bool v62.
-
-Lemma eq_true_false_abs : (b:bool)(b=true)->(b=false)->False.
-Intros b H; Rewrite H; Auto with bool.
-Qed.
-Hints Resolve eq_true_false_abs : bool.
-
-Lemma not_true_is_false : (b:bool)~b=true->b=false.
-NewDestruct b.
-Intros.
-Red in H; Elim H.
-Reflexivity.
-Intros abs.
-Reflexivity.
-Qed.
-
-Lemma not_false_is_true : (b:bool)~b=false->b=true.
-NewDestruct b.
-Intros.
-Reflexivity.
-Intro H; Red in H; Elim H.
-Reflexivity.
-Qed.
-
-(**********************)
-(** Order on booleans *)
-(**********************)
-
-Definition leb := [b1,b2:bool]
- Cases b1 of
- | true => b2=true
- | false => True
- end.
-Hints Unfold leb : bool v62.
-
-(*************)
-(** Equality *)
-(*************)
-
-Definition eqb : bool->bool->bool :=
- [b1,b2:bool]
- Cases b1 b2 of
- true true => true
- | true false => false
- | false true => false
- | false false => true
- end.
-
-Lemma eqb_refl : (x:bool)(Is_true (eqb x x)).
-NewDestruct x; Simpl; Auto with bool.
-Qed.
-
-Lemma eqb_eq : (x,y:bool)(Is_true (eqb x y))->x=y.
-NewDestruct x; NewDestruct y; Simpl; Tauto.
-Qed.
-
-Lemma Is_true_eq_true : (x:bool) (Is_true x) -> x=true.
-NewDestruct x; Simpl; Tauto.
-Qed.
-
-Lemma Is_true_eq_true2 : (x:bool) x=true -> (Is_true x).
-NewDestruct x; Simpl; Auto with bool.
-Qed.
-
-Lemma eqb_subst :
- (P:bool->Prop)(b1,b2:bool)(eqb b1 b2)=true->(P b1)->(P b2).
-Unfold eqb .
-Intros P b1.
-Intros b2.
-Case b1.
-Case b2.
-Trivial with bool.
-Intros H.
-Inversion_clear H.
-Case b2.
-Intros H.
-Inversion_clear H.
-Trivial with bool.
-Qed.
-
-Lemma eqb_reflx : (b:bool)(eqb b b)=true.
-Intro b.
-Case b.
-Trivial with bool.
-Trivial with bool.
-Qed.
-
-Lemma eqb_prop : (a,b:bool)(eqb a b)=true -> a=b.
-NewDestruct a; NewDestruct b; Simpl; Intro;
- Discriminate H Orelse Reflexivity.
-Qed.
-
-
-(************************)
-(** Logical combinators *)
-(************************)
-
-Definition ifb : bool -> bool -> bool -> bool
- := [b1,b2,b3:bool](Cases b1 of true => b2 | false => b3 end).
-
-Definition andb : bool -> bool -> bool
- := [b1,b2:bool](ifb b1 b2 false).
-
-Definition orb : bool -> bool -> bool
- := [b1,b2:bool](ifb b1 true b2).
-
-Definition implb : bool -> bool -> bool
- := [b1,b2:bool](ifb b1 b2 true).
-
-Definition xorb : bool -> bool -> bool
- := [b1,b2:bool]
- Cases b1 b2 of
- true true => false
- | true false => true
- | false true => true
- | false false => false
- end.
-
-Definition negb := [b:bool]Cases b of
- true => false
- | false => true
- end.
-
-Infix "||" orb (at level 4, left associativity) : bool_scope.
-Infix "&&" andb (at level 3, no associativity) : bool_scope
- V8only (at level 40, left associativity).
-
-Open Scope bool_scope.
-
-Delimits Scope bool_scope with bool.
-
-Bind Scope bool_scope with bool.
-
-(**************************)
-(** Lemmas about [negb] *)
-(**************************)
-
-Lemma negb_intro : (b:bool)b=(negb (negb b)).
-Proof.
-NewDestruct b; Reflexivity.
-Qed.
-
-Lemma negb_elim : (b:bool)(negb (negb b))=b.
-Proof.
-NewDestruct b; Reflexivity.
-Qed.
-
-Lemma negb_orb : (b1,b2:bool)
- (negb (orb b1 b2)) = (andb (negb b1) (negb b2)).
-Proof.
- NewDestruct b1; NewDestruct b2; Simpl; Reflexivity.
-Qed.
-
-Lemma negb_andb : (b1,b2:bool)
- (negb (andb b1 b2)) = (orb (negb b1) (negb b2)).
-Proof.
- NewDestruct b1; NewDestruct b2; Simpl; Reflexivity.
-Qed.
-
-Lemma negb_sym : (b,b':bool)(b'=(negb b))->(b=(negb b')).
-Proof.
-NewDestruct b; NewDestruct b'; Intros; Simpl; Trivial with bool.
-Qed.
-
-Lemma no_fixpoint_negb : (b:bool)~(negb b)=b.
-Proof.
-NewDestruct b; Simpl; Intro; Apply diff_true_false; Auto with bool.
-Qed.
-
-Lemma eqb_negb1 : (b:bool)(eqb (negb b) b)=false.
-NewDestruct b.
-Trivial with bool.
-Trivial with bool.
-Qed.
-
-Lemma eqb_negb2 : (b:bool)(eqb b (negb b))=false.
-NewDestruct b.
-Trivial with bool.
-Trivial with bool.
-Qed.
-
-
-Lemma if_negb : (A:Set) (b:bool) (x,y:A) (if (negb b) then x else y)=(if b then y else x).
-Proof.
- NewDestruct b;Trivial.
-Qed.
-
-
-(****************************)
-(** A few lemmas about [or] *)
-(****************************)
-
-Lemma orb_prop :
- (a,b:bool)(orb a b)=true -> (a = true)\/(b = true).
-NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool.
-Qed.
-
-Lemma orb_prop2 :
- (a,b:bool)(Is_true (orb a b)) -> (Is_true a)\/(Is_true b).
-NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H); Auto with bool.
-Qed.
-
-Lemma orb_true_intro
- : (b1,b2:bool)(b1=true)\/(b2=true)->(orb b1 b2)=true.
-NewDestruct b1; Auto with bool.
-NewDestruct 1; Intros.
-Elim diff_true_false; Auto with bool.
-Rewrite H; Trivial with bool.
-Qed.
-Hints Resolve orb_true_intro : bool v62.
-
-Lemma orb_b_true : (b:bool)(orb b true)=true.
-Auto with bool.
-Qed.
-Hints Resolve orb_b_true : bool v62.
-
-Lemma orb_true_b : (b:bool)(orb true b)=true.
-Trivial with bool.
-Qed.
-
-Definition orb_true_elim : (b1,b2:bool)(orb b1 b2)=true -> {b1=true}+{b2=true}.
-NewDestruct b1; Simpl; Auto with bool.
-Defined.
-
-Lemma orb_false_intro
- : (b1,b2:bool)(b1=false)->(b2=false)->(orb b1 b2)=false.
-Intros b1 b2 H1 H2; Rewrite H1; Rewrite H2; Trivial with bool.
-Qed.
-Hints Resolve orb_false_intro : bool v62.
-
-Lemma orb_b_false : (b:bool)(orb b false)=b.
-Proof.
- NewDestruct b; Trivial with bool.
-Qed.
-Hints Resolve orb_b_false : bool v62.
-
-Lemma orb_false_b : (b:bool)(orb false b)=b.
-Proof.
- NewDestruct b; Trivial with bool.
-Qed.
-Hints Resolve orb_false_b : bool v62.
-
-Lemma orb_false_elim :
- (b1,b2:bool)(orb b1 b2)=false -> (b1=false)/\(b2=false).
-Proof.
- NewDestruct b1.
- Intros; Elim diff_true_false; Auto with bool.
- NewDestruct b2.
- Intros; Elim diff_true_false; Auto with bool.
- Auto with bool.
-Qed.
-
-Lemma orb_neg_b :
- (b:bool)(orb b (negb b))=true.
-Proof.
- NewDestruct b; Reflexivity.
-Qed.
-Hints Resolve orb_neg_b : bool v62.
-
-Lemma orb_sym : (b1,b2:bool)(orb b1 b2)=(orb b2 b1).
-NewDestruct b1; NewDestruct b2; Reflexivity.
-Qed.
-
-Lemma orb_assoc : (b1,b2,b3:bool)(orb b1 (orb b2 b3))=(orb (orb b1 b2) b3).
-Proof.
- NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Qed.
-
-Hints Resolve orb_sym orb_assoc orb_b_false orb_false_b : bool v62.
-
-(*****************************)
-(** A few lemmas about [and] *)
-(*****************************)
-
-Lemma andb_prop :
- (a,b:bool)(andb a b) = true -> (a = true)/\(b = true).
-
-Proof.
- NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H);
- Auto with bool.
-Qed.
-Hints Resolve andb_prop : bool v62.
-
-Definition andb_true_eq : (a,b:bool) true = (andb a b) -> true = a /\ true = b.
-Proof.
- NewDestruct a; NewDestruct b; Auto.
-Defined.
-
-Lemma andb_prop2 :
- (a,b:bool)(Is_true (andb a b)) -> (Is_true a)/\(Is_true b).
-Proof.
- NewDestruct a; NewDestruct b; Simpl; Try (Intro H;Discriminate H);
- Auto with bool.
-Qed.
-Hints Resolve andb_prop2 : bool v62.
-
-Lemma andb_true_intro : (b1,b2:bool)(b1=true)/\(b2=true)->(andb b1 b2)=true.
-Proof.
- NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
-Qed.
-Hints Resolve andb_true_intro : bool v62.
-
-Lemma andb_true_intro2 :
- (b1,b2:bool)(Is_true b1)->(Is_true b2)->(Is_true (andb b1 b2)).
-Proof.
- NewDestruct b1; NewDestruct b2; Simpl; Tauto.
-Qed.
-Hints Resolve andb_true_intro2 : bool v62.
-
-Lemma andb_false_intro1
- : (b1,b2:bool)(b1=false)->(andb b1 b2)=false.
-NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
-Qed.
-
-Lemma andb_false_intro2
- : (b1,b2:bool)(b2=false)->(andb b1 b2)=false.
-NewDestruct b1; NewDestruct b2; Simpl; Tauto Orelse Auto with bool.
-Qed.
-
-Lemma andb_b_false : (b:bool)(andb b false)=false.
-NewDestruct b; Auto with bool.
-Qed.
-
-Lemma andb_false_b : (b:bool)(andb false b)=false.
-Trivial with bool.
-Qed.
-
-Lemma andb_b_true : (b:bool)(andb b true)=b.
-NewDestruct b; Auto with bool.
-Qed.
-
-Lemma andb_true_b : (b:bool)(andb true b)=b.
-Trivial with bool.
-Qed.
-
-Definition andb_false_elim :
- (b1,b2:bool)(andb b1 b2)=false -> {b1=false}+{b2=false}.
-NewDestruct b1; Simpl; Auto with bool.
-Defined.
-Hints Resolve andb_false_elim : bool v62.
-
-Lemma andb_neg_b :
- (b:bool)(andb b (negb b))=false.
-NewDestruct b; Reflexivity.
-Qed.
-Hints Resolve andb_neg_b : bool v62.
-
-Lemma andb_sym : (b1,b2:bool)(andb b1 b2)=(andb b2 b1).
-NewDestruct b1; NewDestruct b2; Reflexivity.
-Qed.
-
-Lemma andb_assoc : (b1,b2,b3:bool)(andb b1 (andb b2 b3))=(andb (andb b1 b2) b3).
-NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Qed.
-
-Hints Resolve andb_sym andb_assoc : bool v62.
-
-(*******************************)
-(** Properties of [xorb] *)
-(*******************************)
-
-Lemma xorb_false : (b:bool) (xorb b false)=b.
-Proof.
- NewDestruct b; Trivial.
-Qed.
-
-Lemma false_xorb : (b:bool) (xorb false b)=b.
-Proof.
- NewDestruct b; Trivial.
-Qed.
-
-Lemma xorb_true : (b:bool) (xorb b true)=(negb b).
-Proof.
- Trivial.
-Qed.
-
-Lemma true_xorb : (b:bool) (xorb true b)=(negb b).
-Proof.
- NewDestruct b; Trivial.
-Qed.
-
-Lemma xorb_nilpotent : (b:bool) (xorb b b)=false.
-Proof.
- NewDestruct b; Trivial.
-Qed.
-
-Lemma xorb_comm : (b,b':bool) (xorb b b')=(xorb b' b).
-Proof.
- NewDestruct b; NewDestruct b'; Trivial.
-Qed.
-
-Lemma xorb_assoc : (b,b',b'':bool) (xorb (xorb b b') b'')=(xorb b (xorb b' b'')).
-Proof.
- NewDestruct b; NewDestruct b'; NewDestruct b''; Trivial.
-Qed.
-
-Lemma xorb_eq : (b,b':bool) (xorb b b')=false -> b=b'.
-Proof.
- NewDestruct b; NewDestruct b'; Trivial.
- Unfold xorb. Intros. Rewrite H. Reflexivity.
-Qed.
-
-Lemma xorb_move_l_r_1 : (b,b',b'':bool) (xorb b b')=b'' -> b'=(xorb b b'').
-Proof.
- Intros. Rewrite <- (false_xorb b'). Rewrite <- (xorb_nilpotent b). Rewrite xorb_assoc.
- Rewrite H. Reflexivity.
-Qed.
-
-Lemma xorb_move_l_r_2 : (b,b',b'':bool) (xorb b b')=b'' -> b=(xorb b'' b').
-Proof.
- Intros. Rewrite xorb_comm in H. Rewrite (xorb_move_l_r_1 b' b b'' H). Apply xorb_comm.
-Qed.
-
-Lemma xorb_move_r_l_1 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b' b)=b''.
-Proof.
- Intros. Rewrite H. Rewrite <- xorb_assoc. Rewrite xorb_nilpotent. Apply false_xorb.
-Qed.
-
-Lemma xorb_move_r_l_2 : (b,b',b'':bool) b=(xorb b' b'') -> (xorb b b'')=b'.
-Proof.
- Intros. Rewrite H. Rewrite xorb_assoc. Rewrite xorb_nilpotent. Apply xorb_false.
-Qed.
-
-(*******************************)
-(** De Morgan's law *)
-(*******************************)
-
-Lemma demorgan1 : (b1,b2,b3:bool)
- (andb b1 (orb b2 b3)) = (orb (andb b1 b2) (andb b1 b3)).
-NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Qed.
-
-Lemma demorgan2 : (b1,b2,b3:bool)
- (andb (orb b1 b2) b3) = (orb (andb b1 b3) (andb b2 b3)).
-NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Qed.
-
-Lemma demorgan3 : (b1,b2,b3:bool)
- (orb b1 (andb b2 b3)) = (andb (orb b1 b2) (orb b1 b3)).
-NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Qed.
-
-Lemma demorgan4 : (b1,b2,b3:bool)
- (orb (andb b1 b2) b3) = (andb (orb b1 b3) (orb b2 b3)).
-NewDestruct b1; NewDestruct b2; NewDestruct b3; Reflexivity.
-Qed.
-
-Lemma absoption_andb : (b1,b2:bool)
- (andb b1 (orb b1 b2)) = b1.
-Proof.
- NewDestruct b1; NewDestruct b2; Simpl; Reflexivity.
-Qed.
-
-Lemma absoption_orb : (b1,b2:bool)
- (orb b1 (andb b1 b2)) = b1.
-Proof.
- NewDestruct b1; NewDestruct b2; Simpl; Reflexivity.
-Qed.
-
-
-(** Misc. equalities between booleans (to be used by Auto) *)
-
-Lemma bool_1 : (b1,b2:bool)(b1=true <-> b2=true) -> b1=b2.
-Proof.
- Intros b1 b2; Case b1; Case b2; Intuition.
-Qed.
-
-Lemma bool_2 : (b1,b2:bool)b1=b2 -> b1=true -> b2=true.
-Proof.
- Intros b1 b2; Case b1; Case b2; Intuition.
-Qed.
-
-Lemma bool_3 : (b:bool) ~(negb b)=true -> b=true.
-Proof.
- NewDestruct b; Intuition.
-Qed.
-
-Lemma bool_4 : (b:bool) b=true -> ~(negb b)=true.
-Proof.
- NewDestruct b; Intuition.
-Qed.
-
-Lemma bool_5 : (b:bool) (negb b)=true -> ~b=true.
-Proof.
- NewDestruct b; Intuition.
-Qed.
-
-Lemma bool_6 : (b:bool) ~b=true -> (negb b)=true.
-Proof.
- NewDestruct b; Intuition.
-Qed.
-
-Hints Resolve bool_1 bool_2 bool_3 bool_4 bool_5 bool_6.