diff options
Diffstat (limited to 'theories7/Arith/Wf_nat.v')
-rwxr-xr-x | theories7/Arith/Wf_nat.v | 200 |
1 files changed, 200 insertions, 0 deletions
diff --git a/theories7/Arith/Wf_nat.v b/theories7/Arith/Wf_nat.v new file mode 100755 index 00000000..be1003ce --- /dev/null +++ b/theories7/Arith/Wf_nat.v @@ -0,0 +1,200 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Wf_nat.v,v 1.1.2.1 2004/07/16 19:31:25 herbelin Exp $ i*) + +(** Well-founded relations and natural numbers *) + +Require Lt. + +V7only [Import nat_scope.]. +Open Local Scope nat_scope. + +Implicit Variables Type m,n,p:nat. + +Chapter Well_founded_Nat. + +Variable A : Set. + +Variable f : A -> nat. +Definition ltof := [a,b:A](lt (f a) (f b)). +Definition gtof := [a,b:A](gt (f b) (f a)). + +Theorem well_founded_ltof : (well_founded A ltof). +Proof. +Red. +Cut (n:nat)(a:A)(lt (f a) n)->(Acc A ltof a). +Intros H a; Apply (H (S (f a))); Auto with arith. +NewInduction n. +Intros; Absurd (lt (f a) O); Auto with arith. +Intros a ltSma. +Apply Acc_intro. +Unfold ltof; Intros b ltfafb. +Apply IHn. +Apply lt_le_trans with (f a); Auto with arith. +Qed. + +Theorem well_founded_gtof : (well_founded A gtof). +Proof well_founded_ltof. + +(** It is possible to directly prove the induction principle going + back to primitive recursion on natural numbers ([induction_ltof1]) + or to use the previous lemmas to extract a program with a fixpoint + ([induction_ltof2]) + +the ML-like program for [induction_ltof1] is : [[ + let induction_ltof1 F a = indrec ((f a)+1) a + where rec indrec = + function 0 -> (function a -> error) + |(S m) -> (function a -> (F a (function y -> indrec y m)));; +]] + +the ML-like program for [induction_ltof2] is : [[ + let induction_ltof2 F a = indrec a + where rec indrec a = F a indrec;; +]] *) + +Theorem induction_ltof1 + : (P:A->Set)((x:A)((y:A)(ltof y x)->(P y))->(P x))->(a:A)(P a). +Proof. +Intros P F; Cut (n:nat)(a:A)(lt (f a) n)->(P a). +Intros H a; Apply (H (S (f a))); Auto with arith. +NewInduction n. +Intros; Absurd (lt (f a) O); Auto with arith. +Intros a ltSma. +Apply F. +Unfold ltof; Intros b ltfafb. +Apply IHn. +Apply lt_le_trans with (f a); Auto with arith. +Defined. + +Theorem induction_gtof1 + : (P:A->Set)((x:A)((y:A)(gtof y x)->(P y))->(P x))->(a:A)(P a). +Proof. +Exact induction_ltof1. +Defined. + +Theorem induction_ltof2 + : (P:A->Set)((x:A)((y:A)(ltof y x)->(P y))->(P x))->(a:A)(P a). +Proof. +Exact (well_founded_induction A ltof well_founded_ltof). +Defined. + +Theorem induction_gtof2 + : (P:A->Set)((x:A)((y:A)(gtof y x)->(P y))->(P x))->(a:A)(P a). +Proof. +Exact induction_ltof2. +Defined. + +(** If a relation [R] is compatible with [lt] i.e. if [x R y => f(x) < f(y)] + then [R] is well-founded. *) + +Variable R : A->A->Prop. + +Hypothesis H_compat : (x,y:A) (R x y) -> (lt (f x) (f y)). + +Theorem well_founded_lt_compat : (well_founded A R). +Proof. +Red. +Cut (n:nat)(a:A)(lt (f a) n)->(Acc A R a). +Intros H a; Apply (H (S (f a))); Auto with arith. +NewInduction n. +Intros; Absurd (lt (f a) O); Auto with arith. +Intros a ltSma. +Apply Acc_intro. +Intros b ltfafb. +Apply IHn. +Apply lt_le_trans with (f a); Auto with arith. +Qed. + +End Well_founded_Nat. + +Lemma lt_wf : (well_founded nat lt). +Proof (well_founded_ltof nat [m:nat]m). + +Lemma lt_wf_rec1 : (p:nat)(P:nat->Set) + ((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p). +Proof. +Exact [p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)] + (induction_ltof1 nat [m:nat]m P F p). +Defined. + +Lemma lt_wf_rec : (p:nat)(P:nat->Set) + ((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p). +Proof. +Exact [p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)] + (induction_ltof2 nat [m:nat]m P F p). +Defined. + +Lemma lt_wf_ind : (p:nat)(P:nat->Prop) + ((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p). +Intro p; Intros; Elim (lt_wf p); Auto with arith. +Qed. + +Lemma gt_wf_rec : (p:nat)(P:nat->Set) + ((n:nat)((m:nat)(gt n m)->(P m))->(P n)) -> (P p). +Proof. +Exact lt_wf_rec. +Defined. + +Lemma gt_wf_ind : (p:nat)(P:nat->Prop) + ((n:nat)((m:nat)(gt n m)->(P m))->(P n)) -> (P p). +Proof lt_wf_ind. + +Lemma lt_wf_double_rec : + (P:nat->nat->Set) + ((n,m:nat)((p,q:nat)(lt p n)->(P p q))->((p:nat)(lt p m)->(P n p))->(P n m)) + -> (p,q:nat)(P p q). +Intros P Hrec p; Pattern p; Apply lt_wf_rec. +Intros n H q; Pattern q; Apply lt_wf_rec; Auto with arith. +Defined. + +Lemma lt_wf_double_ind : + (P:nat->nat->Prop) + ((n,m:nat)((p,q:nat)(lt p n)->(P p q))->((p:nat)(lt p m)->(P n p))->(P n m)) + -> (p,q:nat)(P p q). +Intros P Hrec p; Pattern p; Apply lt_wf_ind. +Intros n H q; Pattern q; Apply lt_wf_ind; Auto with arith. +Qed. + +Hints Resolve lt_wf : arith. +Hints Resolve well_founded_lt_compat : arith. + +Section LT_WF_REL. +Variable A :Set. +Variable R:A->A->Prop. + +(* Relational form of inversion *) +Variable F : A -> nat -> Prop. +Definition inv_lt_rel + [x,y]:=(EX n | (F x n) & (m:nat)(F y m)->(lt n m)). + +Hypothesis F_compat : (x,y:A) (R x y) -> (inv_lt_rel x y). +Remark acc_lt_rel : + (x:A)(EX n | (F x n))->(Acc A R x). +Intros x (n,fxn); Generalize x fxn; Clear x fxn. +Pattern n; Apply lt_wf_ind; Intros. +Constructor; Intros. +Case (F_compat y x); Trivial; Intros. +Apply (H x0); Auto. +Save. + +Theorem well_founded_inv_lt_rel_compat : (well_founded A R). +Constructor; Intros. +Case (F_compat y a); Trivial; Intros. +Apply acc_lt_rel; Trivial. +Exists x; Trivial. +Save. + + +End LT_WF_REL. + +Lemma well_founded_inv_rel_inv_lt_rel + : (A:Set)(F:A->nat->Prop)(well_founded A (inv_lt_rel A F)). +Intros; Apply (well_founded_inv_lt_rel_compat A (inv_lt_rel A F) F); Trivial. +Save. |