diff options
Diffstat (limited to 'theories7/Arith/Min.v')
-rwxr-xr-x | theories7/Arith/Min.v | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/theories7/Arith/Min.v b/theories7/Arith/Min.v new file mode 100755 index 00000000..fd5da61a --- /dev/null +++ b/theories7/Arith/Min.v @@ -0,0 +1,84 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Min.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*) + +Require Arith. + +V7only [Import nat_scope.]. +Open Local Scope nat_scope. + +Implicit Variables Type m,n:nat. + +(** minimum of two natural numbers *) + +Fixpoint min [n:nat] : nat -> nat := +[m:nat]Cases n m of + O _ => O + | (S n') O => O + | (S n') (S m') => (S (min n' m')) + end. + +(** Simplifications of [min] *) + +Lemma min_SS : (n,m:nat)((S (min n m))=(min (S n) (S m))). +Proof. +Auto with arith. +Qed. + +Lemma min_sym : (n,m:nat)(min n m)=(min m n). +Proof. +NewInduction n;NewInduction m;Simpl;Auto with arith. +Qed. + +(** [min] and [le] *) + +Lemma min_l : (n,m:nat)(le n m)->(min n m)=n. +Proof. +NewInduction n;NewInduction m;Simpl;Auto with arith. +Qed. + +Lemma min_r : (n,m:nat)(le m n)->(min n m)=m. +Proof. +NewInduction n;NewInduction m;Simpl;Auto with arith. +Qed. + +Lemma le_min_l : (n,m:nat)(le (min n m) n). +Proof. +NewInduction n; Intros; Simpl; Auto with arith. +Elim m; Intros; Simpl; Auto with arith. +Qed. + +Lemma le_min_r : (n,m:nat)(le (min n m) m). +Proof. +NewInduction n; Simpl; Auto with arith. +NewInduction m; Simpl; Auto with arith. +Qed. +Hints Resolve min_l min_r le_min_l le_min_r : arith v62. + +(** [min n m] is equal to [n] or [m] *) + +Lemma min_dec : (n,m:nat){(min n m)=n}+{(min n m)=m}. +Proof. +NewInduction n;NewInduction m;Simpl;Auto with arith. +Elim (IHn m);Intro H;Elim H;Auto. +Qed. + +Lemma min_case : (n,m:nat)(P:nat->Set)(P n)->(P m)->(P (min n m)). +Proof. +NewInduction n; Simpl; Auto with arith. +NewInduction m; Intros; Simpl; Auto with arith. +Pattern (min n m); Apply IHn ; Auto with arith. +Qed. + +Lemma min_case2 : (n,m:nat)(P:nat->Prop)(P n)->(P m)->(P (min n m)). +Proof. +NewInduction n; Simpl; Auto with arith. +NewInduction m; Intros; Simpl; Auto with arith. +Pattern (min n m); Apply IHn ; Auto with arith. +Qed. |