diff options
Diffstat (limited to 'theories7/Arith/Lt.v')
-rwxr-xr-x | theories7/Arith/Lt.v | 176 |
1 files changed, 176 insertions, 0 deletions
diff --git a/theories7/Arith/Lt.v b/theories7/Arith/Lt.v new file mode 100755 index 00000000..9bb1d564 --- /dev/null +++ b/theories7/Arith/Lt.v @@ -0,0 +1,176 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Lt.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*) + +Require Le. +V7only [Import nat_scope.]. +Open Local Scope nat_scope. + +Implicit Variables Type m,n,p:nat. + +(** Irreflexivity *) + +Theorem lt_n_n : (n:nat)~(lt n n). +Proof le_Sn_n. +Hints Resolve lt_n_n : arith v62. + +(** Relationship between [le] and [lt] *) + +Theorem lt_le_S : (n,p:nat)(lt n p)->(le (S n) p). +Proof. +Auto with arith. +Qed. +Hints Immediate lt_le_S : arith v62. + +Theorem lt_n_Sm_le : (n,m:nat)(lt n (S m))->(le n m). +Proof. +Auto with arith. +Qed. +Hints Immediate lt_n_Sm_le : arith v62. + +Theorem le_lt_n_Sm : (n,m:nat)(le n m)->(lt n (S m)). +Proof. +Auto with arith. +Qed. +Hints Immediate le_lt_n_Sm : arith v62. + +Theorem le_not_lt : (n,m:nat)(le n m) -> ~(lt m n). +Proof. +NewInduction 1; Auto with arith. +Qed. + +Theorem lt_not_le : (n,m:nat)(lt n m) -> ~(le m n). +Proof. +Red; Intros n m Lt Le; Exact (le_not_lt m n Le Lt). +Qed. +Hints Immediate le_not_lt lt_not_le : arith v62. + +(** Asymmetry *) + +Theorem lt_not_sym : (n,m:nat)(lt n m) -> ~(lt m n). +Proof. +NewInduction 1; Auto with arith. +Qed. + +(** Order and successor *) + +Theorem lt_n_Sn : (n:nat)(lt n (S n)). +Proof. +Auto with arith. +Qed. +Hints Resolve lt_n_Sn : arith v62. + +Theorem lt_S : (n,m:nat)(lt n m)->(lt n (S m)). +Proof. +Auto with arith. +Qed. +Hints Resolve lt_S : arith v62. + +Theorem lt_n_S : (n,m:nat)(lt n m)->(lt (S n) (S m)). +Proof. +Auto with arith. +Qed. +Hints Resolve lt_n_S : arith v62. + +Theorem lt_S_n : (n,m:nat)(lt (S n) (S m))->(lt n m). +Proof. +Auto with arith. +Qed. +Hints Immediate lt_S_n : arith v62. + +Theorem lt_O_Sn : (n:nat)(lt O (S n)). +Proof. +Auto with arith. +Qed. +Hints Resolve lt_O_Sn : arith v62. + +Theorem lt_n_O : (n:nat)~(lt n O). +Proof le_Sn_O. +Hints Resolve lt_n_O : arith v62. + +(** Predecessor *) + +Lemma S_pred : (n,m:nat)(lt m n)->n=(S (pred n)). +Proof. +NewInduction 1; Auto with arith. +Qed. + +Lemma lt_pred : (n,p:nat)(lt (S n) p)->(lt n (pred p)). +Proof. +NewInduction 1; Simpl; Auto with arith. +Qed. +Hints Immediate lt_pred : arith v62. + +Lemma lt_pred_n_n : (n:nat)(lt O n)->(lt (pred n) n). +NewDestruct 1; Simpl; Auto with arith. +Qed. +Hints Resolve lt_pred_n_n : arith v62. + +(** Transitivity properties *) + +Theorem lt_trans : (n,m,p:nat)(lt n m)->(lt m p)->(lt n p). +Proof. +NewInduction 2; Auto with arith. +Qed. + +Theorem lt_le_trans : (n,m,p:nat)(lt n m)->(le m p)->(lt n p). +Proof. +NewInduction 2; Auto with arith. +Qed. + +Theorem le_lt_trans : (n,m,p:nat)(le n m)->(lt m p)->(lt n p). +Proof. +NewInduction 2; Auto with arith. +Qed. + +Hints Resolve lt_trans lt_le_trans le_lt_trans : arith v62. + +(** Large = strict or equal *) + +Theorem le_lt_or_eq : (n,m:nat)(le n m)->((lt n m) \/ n=m). +Proof. +NewInduction 1; Auto with arith. +Qed. + +Theorem lt_le_weak : (n,m:nat)(lt n m)->(le n m). +Proof. +Auto with arith. +Qed. +Hints Immediate lt_le_weak : arith v62. + +(** Dichotomy *) + +Theorem le_or_lt : (n,m:nat)((le n m)\/(lt m n)). +Proof. +Intros n m; Pattern n m; Apply nat_double_ind; Auto with arith. +NewInduction 1; Auto with arith. +Qed. + +Theorem nat_total_order: (m,n: nat) ~ m = n -> (lt m n) \/ (lt n m). +Proof. +Intros m n diff. +Elim (le_or_lt n m); [Intro H'0 | Auto with arith]. +Elim (le_lt_or_eq n m); Auto with arith. +Intro H'; Elim diff; Auto with arith. +Qed. + +(** Comparison to 0 *) + +Theorem neq_O_lt : (n:nat)(~O=n)->(lt O n). +Proof. +NewInduction n; Auto with arith. +Intros; Absurd O=O; Trivial with arith. +Qed. +Hints Immediate neq_O_lt : arith v62. + +Theorem lt_O_neq : (n:nat)(lt O n)->(~O=n). +Proof. +NewInduction 1; Auto with arith. +Qed. +Hints Immediate lt_O_neq : arith v62. |