diff options
Diffstat (limited to 'theories7/Arith/Le.v')
-rwxr-xr-x | theories7/Arith/Le.v | 122 |
1 files changed, 122 insertions, 0 deletions
diff --git a/theories7/Arith/Le.v b/theories7/Arith/Le.v new file mode 100755 index 00000000..cdb98645 --- /dev/null +++ b/theories7/Arith/Le.v @@ -0,0 +1,122 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Le.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*) + +(** Order on natural numbers *) +V7only [Import nat_scope.]. +Open Local Scope nat_scope. + +Implicit Variables Type m,n,p:nat. + +(** Reflexivity *) + +Theorem le_refl : (n:nat)(le n n). +Proof. +Exact le_n. +Qed. + +(** Transitivity *) + +Theorem le_trans : (n,m,p:nat)(le n m)->(le m p)->(le n p). +Proof. + NewInduction 2; Auto. +Qed. +Hints Resolve le_trans : arith v62. + +(** Order, successor and predecessor *) + +Theorem le_n_S : (n,m:nat)(le n m)->(le (S n) (S m)). +Proof. + NewInduction 1; Auto. +Qed. + +Theorem le_n_Sn : (n:nat)(le n (S n)). +Proof. + Auto. +Qed. + +Theorem le_O_n : (n:nat)(le O n). +Proof. + NewInduction n ; Auto. +Qed. + +Hints Resolve le_n_S le_n_Sn le_O_n le_n_S : arith v62. + +Theorem le_pred_n : (n:nat)(le (pred n) n). +Proof. +NewInduction n ; Auto with arith. +Qed. +Hints Resolve le_pred_n : arith v62. + +Theorem le_trans_S : (n,m:nat)(le (S n) m)->(le n m). +Proof. +Intros n m H ; Apply le_trans with (S n); Auto with arith. +Qed. +Hints Immediate le_trans_S : arith v62. + +Theorem le_S_n : (n,m:nat)(le (S n) (S m))->(le n m). +Proof. +Intros n m H ; Change (le (pred (S n)) (pred (S m))). +Elim H ; Simpl ; Auto with arith. +Qed. +Hints Immediate le_S_n : arith v62. + +Theorem le_pred : (n,m:nat)(le n m)->(le (pred n) (pred m)). +Proof. +NewInduction n as [|n IHn]. Simpl. Auto with arith. +NewDestruct m as [|m]. Simpl. Intro H. Inversion H. +Simpl. Auto with arith. +Qed. + +(** Comparison to 0 *) + +Theorem le_Sn_O : (n:nat)~(le (S n) O). +Proof. +Red ; Intros n H. +Change (IsSucc O) ; Elim H ; Simpl ; Auto with arith. +Qed. +Hints Resolve le_Sn_O : arith v62. + +Theorem le_n_O_eq : (n:nat)(le n O)->(O=n). +Proof. +NewInduction n; Auto with arith. +Intro; Contradiction le_Sn_O with n. +Qed. +Hints Immediate le_n_O_eq : arith v62. + +(** Negative properties *) + +Theorem le_Sn_n : (n:nat)~(le (S n) n). +Proof. +NewInduction n; Auto with arith. +Qed. +Hints Resolve le_Sn_n : arith v62. + +(** Antisymmetry *) + +Theorem le_antisym : (n,m:nat)(le n m)->(le m n)->(n=m). +Proof. +Intros n m h ; NewDestruct h as [|m0]; Auto with arith. +Intros H1. +Absurd (le (S m0) m0) ; Auto with arith. +Apply le_trans with n ; Auto with arith. +Qed. +Hints Immediate le_antisym : arith v62. + +(** A different elimination principle for the order on natural numbers *) + +Lemma le_elim_rel : (P:nat->nat->Prop) + ((p:nat)(P O p))-> + ((p,q:nat)(le p q)->(P p q)->(P (S p) (S q)))-> + (n,m:nat)(le n m)->(P n m). +Proof. +NewInduction n; Auto with arith. +Intros m Le. +Elim Le; Auto with arith. +Qed. |