diff options
Diffstat (limited to 'theories7/Arith/Gt.v')
-rwxr-xr-x | theories7/Arith/Gt.v | 149 |
1 files changed, 149 insertions, 0 deletions
diff --git a/theories7/Arith/Gt.v b/theories7/Arith/Gt.v new file mode 100755 index 00000000..16b6f203 --- /dev/null +++ b/theories7/Arith/Gt.v @@ -0,0 +1,149 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Gt.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*) + +Require Le. +Require Lt. +Require Plus. +V7only [Import nat_scope.]. +Open Local Scope nat_scope. + +Implicit Variables Type m,n,p:nat. + +(** Order and successor *) + +Theorem gt_Sn_O : (n:nat)(gt (S n) O). +Proof. + Auto with arith. +Qed. +Hints Resolve gt_Sn_O : arith v62. + +Theorem gt_Sn_n : (n:nat)(gt (S n) n). +Proof. + Auto with arith. +Qed. +Hints Resolve gt_Sn_n : arith v62. + +Theorem gt_n_S : (n,m:nat)(gt n m)->(gt (S n) (S m)). +Proof. + Auto with arith. +Qed. +Hints Resolve gt_n_S : arith v62. + +Lemma gt_S_n : (n,p:nat)(gt (S p) (S n))->(gt p n). +Proof. + Auto with arith. +Qed. +Hints Immediate gt_S_n : arith v62. + +Theorem gt_S : (n,m:nat)(gt (S n) m)->((gt n m)\/(m=n)). +Proof. + Intros n m H; Unfold gt; Apply le_lt_or_eq; Auto with arith. +Qed. + +Lemma gt_pred : (n,p:nat)(gt p (S n))->(gt (pred p) n). +Proof. + Auto with arith. +Qed. +Hints Immediate gt_pred : arith v62. + +(** Irreflexivity *) + +Lemma gt_antirefl : (n:nat)~(gt n n). +Proof lt_n_n. +Hints Resolve gt_antirefl : arith v62. + +(** Asymmetry *) + +Lemma gt_not_sym : (n,m:nat)(gt n m) -> ~(gt m n). +Proof [n,m:nat](lt_not_sym m n). + +Hints Resolve gt_not_sym : arith v62. + +(** Relating strict and large orders *) + +Lemma le_not_gt : (n,m:nat)(le n m) -> ~(gt n m). +Proof le_not_lt. +Hints Resolve le_not_gt : arith v62. + +Lemma gt_not_le : (n,m:nat)(gt n m) -> ~(le n m). +Proof. +Auto with arith. +Qed. + +Hints Resolve gt_not_le : arith v62. + +Theorem le_S_gt : (n,m:nat)(le (S n) m)->(gt m n). +Proof. + Auto with arith. +Qed. +Hints Immediate le_S_gt : arith v62. + +Lemma gt_S_le : (n,p:nat)(gt (S p) n)->(le n p). +Proof. + Intros n p; Exact (lt_n_Sm_le n p). +Qed. +Hints Immediate gt_S_le : arith v62. + +Lemma gt_le_S : (n,p:nat)(gt p n)->(le (S n) p). +Proof. + Auto with arith. +Qed. +Hints Resolve gt_le_S : arith v62. + +Lemma le_gt_S : (n,p:nat)(le n p)->(gt (S p) n). +Proof. + Auto with arith. +Qed. +Hints Resolve le_gt_S : arith v62. + +(** Transitivity *) + +Theorem le_gt_trans : (n,m,p:nat)(le m n)->(gt m p)->(gt n p). +Proof. + Red; Intros; Apply lt_le_trans with m; Auto with arith. +Qed. + +Theorem gt_le_trans : (n,m,p:nat)(gt n m)->(le p m)->(gt n p). +Proof. + Red; Intros; Apply le_lt_trans with m; Auto with arith. +Qed. + +Lemma gt_trans : (n,m,p:nat)(gt n m)->(gt m p)->(gt n p). +Proof. + Red; Intros n m p H1 H2. + Apply lt_trans with m; Auto with arith. +Qed. + +Theorem gt_trans_S : (n,m,p:nat)(gt (S n) m)->(gt m p)->(gt n p). +Proof. + Red; Intros; Apply lt_le_trans with m; Auto with arith. +Qed. + +Hints Resolve gt_trans_S le_gt_trans gt_le_trans : arith v62. + +(** Comparison to 0 *) + +Theorem gt_O_eq : (n:nat)((gt n O)\/(O=n)). +Proof. + Intro n ; Apply gt_S ; Auto with arith. +Qed. + +(** Simplification and compatibility *) + +Lemma simpl_gt_plus_l : (n,m,p:nat)(gt (plus p n) (plus p m))->(gt n m). +Proof. + Red; Intros n m p H; Apply simpl_lt_plus_l with p; Auto with arith. +Qed. + +Lemma gt_reg_l : (n,m,p:nat)(gt n m)->(gt (plus p n) (plus p m)). +Proof. + Auto with arith. +Qed. +Hints Resolve gt_reg_l : arith v62. |