diff options
Diffstat (limited to 'theories7/Arith/Gt.v')
-rwxr-xr-x | theories7/Arith/Gt.v | 149 |
1 files changed, 0 insertions, 149 deletions
diff --git a/theories7/Arith/Gt.v b/theories7/Arith/Gt.v deleted file mode 100755 index 16b6f203..00000000 --- a/theories7/Arith/Gt.v +++ /dev/null @@ -1,149 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Gt.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*) - -Require Le. -Require Lt. -Require Plus. -V7only [Import nat_scope.]. -Open Local Scope nat_scope. - -Implicit Variables Type m,n,p:nat. - -(** Order and successor *) - -Theorem gt_Sn_O : (n:nat)(gt (S n) O). -Proof. - Auto with arith. -Qed. -Hints Resolve gt_Sn_O : arith v62. - -Theorem gt_Sn_n : (n:nat)(gt (S n) n). -Proof. - Auto with arith. -Qed. -Hints Resolve gt_Sn_n : arith v62. - -Theorem gt_n_S : (n,m:nat)(gt n m)->(gt (S n) (S m)). -Proof. - Auto with arith. -Qed. -Hints Resolve gt_n_S : arith v62. - -Lemma gt_S_n : (n,p:nat)(gt (S p) (S n))->(gt p n). -Proof. - Auto with arith. -Qed. -Hints Immediate gt_S_n : arith v62. - -Theorem gt_S : (n,m:nat)(gt (S n) m)->((gt n m)\/(m=n)). -Proof. - Intros n m H; Unfold gt; Apply le_lt_or_eq; Auto with arith. -Qed. - -Lemma gt_pred : (n,p:nat)(gt p (S n))->(gt (pred p) n). -Proof. - Auto with arith. -Qed. -Hints Immediate gt_pred : arith v62. - -(** Irreflexivity *) - -Lemma gt_antirefl : (n:nat)~(gt n n). -Proof lt_n_n. -Hints Resolve gt_antirefl : arith v62. - -(** Asymmetry *) - -Lemma gt_not_sym : (n,m:nat)(gt n m) -> ~(gt m n). -Proof [n,m:nat](lt_not_sym m n). - -Hints Resolve gt_not_sym : arith v62. - -(** Relating strict and large orders *) - -Lemma le_not_gt : (n,m:nat)(le n m) -> ~(gt n m). -Proof le_not_lt. -Hints Resolve le_not_gt : arith v62. - -Lemma gt_not_le : (n,m:nat)(gt n m) -> ~(le n m). -Proof. -Auto with arith. -Qed. - -Hints Resolve gt_not_le : arith v62. - -Theorem le_S_gt : (n,m:nat)(le (S n) m)->(gt m n). -Proof. - Auto with arith. -Qed. -Hints Immediate le_S_gt : arith v62. - -Lemma gt_S_le : (n,p:nat)(gt (S p) n)->(le n p). -Proof. - Intros n p; Exact (lt_n_Sm_le n p). -Qed. -Hints Immediate gt_S_le : arith v62. - -Lemma gt_le_S : (n,p:nat)(gt p n)->(le (S n) p). -Proof. - Auto with arith. -Qed. -Hints Resolve gt_le_S : arith v62. - -Lemma le_gt_S : (n,p:nat)(le n p)->(gt (S p) n). -Proof. - Auto with arith. -Qed. -Hints Resolve le_gt_S : arith v62. - -(** Transitivity *) - -Theorem le_gt_trans : (n,m,p:nat)(le m n)->(gt m p)->(gt n p). -Proof. - Red; Intros; Apply lt_le_trans with m; Auto with arith. -Qed. - -Theorem gt_le_trans : (n,m,p:nat)(gt n m)->(le p m)->(gt n p). -Proof. - Red; Intros; Apply le_lt_trans with m; Auto with arith. -Qed. - -Lemma gt_trans : (n,m,p:nat)(gt n m)->(gt m p)->(gt n p). -Proof. - Red; Intros n m p H1 H2. - Apply lt_trans with m; Auto with arith. -Qed. - -Theorem gt_trans_S : (n,m,p:nat)(gt (S n) m)->(gt m p)->(gt n p). -Proof. - Red; Intros; Apply lt_le_trans with m; Auto with arith. -Qed. - -Hints Resolve gt_trans_S le_gt_trans gt_le_trans : arith v62. - -(** Comparison to 0 *) - -Theorem gt_O_eq : (n:nat)((gt n O)\/(O=n)). -Proof. - Intro n ; Apply gt_S ; Auto with arith. -Qed. - -(** Simplification and compatibility *) - -Lemma simpl_gt_plus_l : (n,m,p:nat)(gt (plus p n) (plus p m))->(gt n m). -Proof. - Red; Intros n m p H; Apply simpl_lt_plus_l with p; Auto with arith. -Qed. - -Lemma gt_reg_l : (n,m,p:nat)(gt n m)->(gt (plus p n) (plus p m)). -Proof. - Auto with arith. -Qed. -Hints Resolve gt_reg_l : arith v62. |