summaryrefslogtreecommitdiff
path: root/theories7/Arith/Gt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Arith/Gt.v')
-rwxr-xr-xtheories7/Arith/Gt.v149
1 files changed, 0 insertions, 149 deletions
diff --git a/theories7/Arith/Gt.v b/theories7/Arith/Gt.v
deleted file mode 100755
index 16b6f203..00000000
--- a/theories7/Arith/Gt.v
+++ /dev/null
@@ -1,149 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Gt.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*)
-
-Require Le.
-Require Lt.
-Require Plus.
-V7only [Import nat_scope.].
-Open Local Scope nat_scope.
-
-Implicit Variables Type m,n,p:nat.
-
-(** Order and successor *)
-
-Theorem gt_Sn_O : (n:nat)(gt (S n) O).
-Proof.
- Auto with arith.
-Qed.
-Hints Resolve gt_Sn_O : arith v62.
-
-Theorem gt_Sn_n : (n:nat)(gt (S n) n).
-Proof.
- Auto with arith.
-Qed.
-Hints Resolve gt_Sn_n : arith v62.
-
-Theorem gt_n_S : (n,m:nat)(gt n m)->(gt (S n) (S m)).
-Proof.
- Auto with arith.
-Qed.
-Hints Resolve gt_n_S : arith v62.
-
-Lemma gt_S_n : (n,p:nat)(gt (S p) (S n))->(gt p n).
-Proof.
- Auto with arith.
-Qed.
-Hints Immediate gt_S_n : arith v62.
-
-Theorem gt_S : (n,m:nat)(gt (S n) m)->((gt n m)\/(m=n)).
-Proof.
- Intros n m H; Unfold gt; Apply le_lt_or_eq; Auto with arith.
-Qed.
-
-Lemma gt_pred : (n,p:nat)(gt p (S n))->(gt (pred p) n).
-Proof.
- Auto with arith.
-Qed.
-Hints Immediate gt_pred : arith v62.
-
-(** Irreflexivity *)
-
-Lemma gt_antirefl : (n:nat)~(gt n n).
-Proof lt_n_n.
-Hints Resolve gt_antirefl : arith v62.
-
-(** Asymmetry *)
-
-Lemma gt_not_sym : (n,m:nat)(gt n m) -> ~(gt m n).
-Proof [n,m:nat](lt_not_sym m n).
-
-Hints Resolve gt_not_sym : arith v62.
-
-(** Relating strict and large orders *)
-
-Lemma le_not_gt : (n,m:nat)(le n m) -> ~(gt n m).
-Proof le_not_lt.
-Hints Resolve le_not_gt : arith v62.
-
-Lemma gt_not_le : (n,m:nat)(gt n m) -> ~(le n m).
-Proof.
-Auto with arith.
-Qed.
-
-Hints Resolve gt_not_le : arith v62.
-
-Theorem le_S_gt : (n,m:nat)(le (S n) m)->(gt m n).
-Proof.
- Auto with arith.
-Qed.
-Hints Immediate le_S_gt : arith v62.
-
-Lemma gt_S_le : (n,p:nat)(gt (S p) n)->(le n p).
-Proof.
- Intros n p; Exact (lt_n_Sm_le n p).
-Qed.
-Hints Immediate gt_S_le : arith v62.
-
-Lemma gt_le_S : (n,p:nat)(gt p n)->(le (S n) p).
-Proof.
- Auto with arith.
-Qed.
-Hints Resolve gt_le_S : arith v62.
-
-Lemma le_gt_S : (n,p:nat)(le n p)->(gt (S p) n).
-Proof.
- Auto with arith.
-Qed.
-Hints Resolve le_gt_S : arith v62.
-
-(** Transitivity *)
-
-Theorem le_gt_trans : (n,m,p:nat)(le m n)->(gt m p)->(gt n p).
-Proof.
- Red; Intros; Apply lt_le_trans with m; Auto with arith.
-Qed.
-
-Theorem gt_le_trans : (n,m,p:nat)(gt n m)->(le p m)->(gt n p).
-Proof.
- Red; Intros; Apply le_lt_trans with m; Auto with arith.
-Qed.
-
-Lemma gt_trans : (n,m,p:nat)(gt n m)->(gt m p)->(gt n p).
-Proof.
- Red; Intros n m p H1 H2.
- Apply lt_trans with m; Auto with arith.
-Qed.
-
-Theorem gt_trans_S : (n,m,p:nat)(gt (S n) m)->(gt m p)->(gt n p).
-Proof.
- Red; Intros; Apply lt_le_trans with m; Auto with arith.
-Qed.
-
-Hints Resolve gt_trans_S le_gt_trans gt_le_trans : arith v62.
-
-(** Comparison to 0 *)
-
-Theorem gt_O_eq : (n:nat)((gt n O)\/(O=n)).
-Proof.
- Intro n ; Apply gt_S ; Auto with arith.
-Qed.
-
-(** Simplification and compatibility *)
-
-Lemma simpl_gt_plus_l : (n,m,p:nat)(gt (plus p n) (plus p m))->(gt n m).
-Proof.
- Red; Intros n m p H; Apply simpl_lt_plus_l with p; Auto with arith.
-Qed.
-
-Lemma gt_reg_l : (n,m,p:nat)(gt n m)->(gt (plus p n) (plus p m)).
-Proof.
- Auto with arith.
-Qed.
-Hints Resolve gt_reg_l : arith v62.