summaryrefslogtreecommitdiff
path: root/theories7/Arith/Factorial.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Arith/Factorial.v')
-rw-r--r--theories7/Arith/Factorial.v51
1 files changed, 0 insertions, 51 deletions
diff --git a/theories7/Arith/Factorial.v b/theories7/Arith/Factorial.v
deleted file mode 100644
index a8a60c98..00000000
--- a/theories7/Arith/Factorial.v
+++ /dev/null
@@ -1,51 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Factorial.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*)
-
-Require Plus.
-Require Mult.
-Require Lt.
-V7only [Import nat_scope.].
-Open Local Scope nat_scope.
-
-(** Factorial *)
-
-Fixpoint fact [n:nat]:nat:=
- Cases n of
- O => (S O)
- |(S n) => (mult (S n) (fact n))
- end.
-
-Arguments Scope fact [ nat_scope ].
-
-Lemma lt_O_fact : (n:nat)(lt O (fact n)).
-Proof.
-Induction n; Unfold lt; Simpl; Auto with arith.
-Qed.
-
-Lemma fact_neq_0:(n:nat)~(fact n)=O.
-Proof.
-Intro.
-Apply sym_not_eq.
-Apply lt_O_neq.
-Apply lt_O_fact.
-Qed.
-
-Lemma fact_growing : (n,m:nat) (le n m) -> (le (fact n) (fact m)).
-Proof.
-NewInduction 1.
-Apply le_n.
-Assert (le (mult (S O) (fact n)) (mult (S m) (fact m))).
-Apply le_mult_mult.
-Apply lt_le_S; Apply lt_O_Sn.
-Assumption.
-Simpl (mult (S O) (fact n)) in H0.
-Rewrite <- plus_n_O in H0.
-Assumption.
-Qed.