summaryrefslogtreecommitdiff
path: root/theories7/Arith/Div2.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Arith/Div2.v')
-rw-r--r--theories7/Arith/Div2.v174
1 files changed, 0 insertions, 174 deletions
diff --git a/theories7/Arith/Div2.v b/theories7/Arith/Div2.v
deleted file mode 100644
index 8bd0160f..00000000
--- a/theories7/Arith/Div2.v
+++ /dev/null
@@ -1,174 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Div2.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*)
-
-Require Lt.
-Require Plus.
-Require Compare_dec.
-Require Even.
-
-V7only [Import nat_scope.].
-Open Local Scope nat_scope.
-
-Implicit Variables Type n:nat.
-
-(** Here we define [n/2] and prove some of its properties *)
-
-Fixpoint div2 [n:nat] : nat :=
- Cases n of
- O => O
- | (S O) => O
- | (S (S n')) => (S (div2 n'))
- end.
-
-(** Since [div2] is recursively defined on [0], [1] and [(S (S n))], it is
- useful to prove the corresponding induction principle *)
-
-Lemma ind_0_1_SS : (P:nat->Prop)
- (P O) -> (P (S O)) -> ((n:nat)(P n)->(P (S (S n)))) -> (n:nat)(P n).
-Proof.
-Intros.
-Cut (n:nat)(P n)/\(P (S n)).
-Intros. Elim (H2 n). Auto with arith.
-
-NewInduction n0. Auto with arith.
-Intros. Elim IHn0; Auto with arith.
-Qed.
-
-(** [0 <n => n/2 < n] *)
-
-Lemma lt_div2 : (n:nat) (lt O n) -> (lt (div2 n) n).
-Proof.
-Intro n. Pattern n. Apply ind_0_1_SS.
-Intro. Inversion H.
-Auto with arith.
-Intros. Simpl.
-Case (zerop n0).
-Intro. Rewrite e. Auto with arith.
-Auto with arith.
-Qed.
-
-Hints Resolve lt_div2 : arith.
-
-(** Properties related to the parity *)
-
-Lemma even_odd_div2 : (n:nat)
- ((even n)<->(div2 n)=(div2 (S n))) /\ ((odd n)<->(S (div2 n))=(div2 (S n))).
-Proof.
-Intro n. Pattern n. Apply ind_0_1_SS.
-(* n = 0 *)
-Split. Split; Auto with arith.
-Split. Intro H. Inversion H.
-Intro H. Absurd (S (div2 O))=(div2 (S O)); Auto with arith.
-(* n = 1 *)
-Split. Split. Intro. Inversion H. Inversion H1.
-Intro H. Absurd (div2 (S O))=(div2 (S (S O))).
-Simpl. Discriminate. Assumption.
-Split; Auto with arith.
-(* n = (S (S n')) *)
-Intros. Decompose [and] H. Unfold iff in H0 H1.
-Decompose [and] H0. Decompose [and] H1. Clear H H0 H1.
-Split; Split; Auto with arith.
-Intro H. Inversion H. Inversion H1.
-Change (S (div2 n0))=(S (div2 (S n0))). Auto with arith.
-Intro H. Inversion H. Inversion H1.
-Change (S (S (div2 n0)))=(S (div2 (S n0))). Auto with arith.
-Qed.
-
-(** Specializations *)
-
-Lemma even_div2 : (n:nat) (even n) -> (div2 n)=(div2 (S n)).
-Proof [n:nat](proj1 ? ? (proj1 ? ? (even_odd_div2 n))).
-
-Lemma div2_even : (n:nat) (div2 n)=(div2 (S n)) -> (even n).
-Proof [n:nat](proj2 ? ? (proj1 ? ? (even_odd_div2 n))).
-
-Lemma odd_div2 : (n:nat) (odd n) -> (S (div2 n))=(div2 (S n)).
-Proof [n:nat](proj1 ? ? (proj2 ? ? (even_odd_div2 n))).
-
-Lemma div2_odd : (n:nat) (S (div2 n))=(div2 (S n)) -> (odd n).
-Proof [n:nat](proj2 ? ? (proj2 ? ? (even_odd_div2 n))).
-
-Hints Resolve even_div2 div2_even odd_div2 div2_odd : arith.
-
-(** Properties related to the double ([2n]) *)
-
-Definition double := [n:nat](plus n n).
-
-Hints Unfold double : arith.
-
-Lemma double_S : (n:nat) (double (S n))=(S (S (double n))).
-Proof.
-Intro. Unfold double. Simpl. Auto with arith.
-Qed.
-
-Lemma double_plus : (m,n:nat) (double (plus m n))=(plus (double m) (double n)).
-Proof.
-Intros m n. Unfold double.
-Do 2 Rewrite -> plus_assoc_r. Rewrite -> (plus_permute n).
-Reflexivity.
-Qed.
-
-Hints Resolve double_S : arith.
-
-Lemma even_odd_double : (n:nat)
- ((even n)<->n=(double (div2 n))) /\ ((odd n)<->n=(S (double (div2 n)))).
-Proof.
-Intro n. Pattern n. Apply ind_0_1_SS.
-(* n = 0 *)
-Split; Split; Auto with arith.
-Intro H. Inversion H.
-(* n = 1 *)
-Split; Split; Auto with arith.
-Intro H. Inversion H. Inversion H1.
-(* n = (S (S n')) *)
-Intros. Decompose [and] H. Unfold iff in H0 H1.
-Decompose [and] H0. Decompose [and] H1. Clear H H0 H1.
-Split; Split.
-Intro H. Inversion H. Inversion H1.
-Simpl. Rewrite (double_S (div2 n0)). Auto with arith.
-Simpl. Rewrite (double_S (div2 n0)). Intro H. Injection H. Auto with arith.
-Intro H. Inversion H. Inversion H1.
-Simpl. Rewrite (double_S (div2 n0)). Auto with arith.
-Simpl. Rewrite (double_S (div2 n0)). Intro H. Injection H. Auto with arith.
-Qed.
-
-
-(** Specializations *)
-
-Lemma even_double : (n:nat) (even n) -> n=(double (div2 n)).
-Proof [n:nat](proj1 ? ? (proj1 ? ? (even_odd_double n))).
-
-Lemma double_even : (n:nat) n=(double (div2 n)) -> (even n).
-Proof [n:nat](proj2 ? ? (proj1 ? ? (even_odd_double n))).
-
-Lemma odd_double : (n:nat) (odd n) -> n=(S (double (div2 n))).
-Proof [n:nat](proj1 ? ? (proj2 ? ? (even_odd_double n))).
-
-Lemma double_odd : (n:nat) n=(S (double (div2 n))) -> (odd n).
-Proof [n:nat](proj2 ? ? (proj2 ? ? (even_odd_double n))).
-
-Hints Resolve even_double double_even odd_double double_odd : arith.
-
-(** Application:
- - if [n] is even then there is a [p] such that [n = 2p]
- - if [n] is odd then there is a [p] such that [n = 2p+1]
-
- (Immediate: it is [n/2]) *)
-
-Lemma even_2n : (n:nat) (even n) -> { p:nat | n=(double p) }.
-Proof.
-Intros n H. Exists (div2 n). Auto with arith.
-Qed.
-
-Lemma odd_S2n : (n:nat) (odd n) -> { p:nat | n=(S (double p)) }.
-Proof.
-Intros n H. Exists (div2 n). Auto with arith.
-Qed.
-