summaryrefslogtreecommitdiff
path: root/theories7/Arith/Div.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Arith/Div.v')
-rwxr-xr-xtheories7/Arith/Div.v64
1 files changed, 64 insertions, 0 deletions
diff --git a/theories7/Arith/Div.v b/theories7/Arith/Div.v
new file mode 100755
index 00000000..59694628
--- /dev/null
+++ b/theories7/Arith/Div.v
@@ -0,0 +1,64 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Div.v,v 1.1.2.1 2004/07/16 19:31:23 herbelin Exp $ i*)
+
+(** Euclidean division *)
+
+V7only [Import nat_scope.].
+Open Local Scope nat_scope.
+
+Require Le.
+Require Euclid_def.
+Require Compare_dec.
+
+Implicit Variables Type n,a,b,q,r:nat.
+
+Fixpoint inf_dec [n:nat] : nat->bool :=
+ [m:nat] Cases n m of
+ O _ => true
+ | (S n') O => false
+ | (S n') (S m') => (inf_dec n' m')
+ end.
+
+Theorem div1 : (b:nat)(gt b O)->(a:nat)(diveucl a b).
+Realizer Fix div1 {div1/2: nat->nat->diveucl :=
+ [b,a]Cases a of
+ O => (O,O)
+ | (S n) =>
+ let (q,r) = (div1 b n) in
+ if (le_gt_dec b (S r)) then ((S q),O)
+ else (q,(S r))
+ end}.
+Program_all.
+Rewrite e.
+Replace b with (S r).
+Simpl.
+Elim plus_n_O; Auto with arith.
+Apply le_antisym; Auto with arith.
+Elim plus_n_Sm; Auto with arith.
+Qed.
+
+Theorem div2 : (b:nat)(gt b O)->(a:nat)(diveucl a b).
+Realizer Fix div1 {div1/2: nat->nat->diveucl :=
+ [b,a]Cases a of
+ O => (O,O)
+ | (S n) =>
+ let (q,r) = (div1 b n) in
+ if (inf_dec b (S r)) :: :: { {(le b (S r))}+{(gt b (S r))} }
+ then ((S q),O)
+ else (q,(S r))
+ end}.
+Program_all.
+Rewrite e.
+Replace b with (S r).
+Simpl.
+Elim plus_n_O; Auto with arith.
+Apply le_antisym; Auto with arith.
+Elim plus_n_Sm; Auto with arith.
+Qed.