diff options
Diffstat (limited to 'theories7/Arith/Compare_dec.v')
-rwxr-xr-x | theories7/Arith/Compare_dec.v | 109 |
1 files changed, 109 insertions, 0 deletions
diff --git a/theories7/Arith/Compare_dec.v b/theories7/Arith/Compare_dec.v new file mode 100755 index 00000000..504c0562 --- /dev/null +++ b/theories7/Arith/Compare_dec.v @@ -0,0 +1,109 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Compare_dec.v,v 1.1.2.1 2004/07/16 19:31:23 herbelin Exp $ i*) + +Require Le. +Require Lt. +Require Gt. +Require Decidable. + +V7only [Import nat_scope.]. +Open Local Scope nat_scope. + +Implicit Variables Type m,n,x,y:nat. + +Definition zerop : (n:nat){n=O}+{lt O n}. +NewDestruct n; Auto with arith. +Defined. + +Definition lt_eq_lt_dec : (n,m:nat){(lt n m)}+{n=m}+{(lt m n)}. +Proof. +NewInduction n; Destruct m; Auto with arith. +Intros m0; Elim (IHn m0); Auto with arith. +NewInduction 1; Auto with arith. +Defined. + +Lemma gt_eq_gt_dec : (n,m:nat)({(gt m n)}+{n=m})+{(gt n m)}. +Proof lt_eq_lt_dec. + +Lemma le_lt_dec : (n,m:nat) {le n m} + {lt m n}. +Proof. +NewInduction n. +Auto with arith. +NewInduction m. +Auto with arith. +Elim (IHn m); Auto with arith. +Defined. + +Definition le_le_S_dec : (n,m:nat) {le n m} + {le (S m) n}. +Proof. +Exact le_lt_dec. +Defined. + +Definition le_ge_dec : (n,m:nat) {le n m} + {ge n m}. +Proof. +Intros; Elim (le_lt_dec n m); Auto with arith. +Defined. + +Definition le_gt_dec : (n,m:nat){(le n m)}+{(gt n m)}. +Proof. +Exact le_lt_dec. +Defined. + +Definition le_lt_eq_dec : (n,m:nat)(le n m)->({(lt n m)}+{n=m}). +Proof. +Intros; Elim (lt_eq_lt_dec n m); Auto with arith. +Intros; Absurd (lt m n); Auto with arith. +Defined. + +(** Proofs of decidability *) + +Theorem dec_le:(x,y:nat)(decidable (le x y)). +Intros x y; Unfold decidable ; Elim (le_gt_dec x y); [ + Auto with arith +| Intro; Right; Apply gt_not_le; Assumption]. +Qed. + +Theorem dec_lt:(x,y:nat)(decidable (lt x y)). +Intros x y; Unfold lt; Apply dec_le. +Qed. + +Theorem dec_gt:(x,y:nat)(decidable (gt x y)). +Intros x y; Unfold gt; Apply dec_lt. +Qed. + +Theorem dec_ge:(x,y:nat)(decidable (ge x y)). +Intros x y; Unfold ge; Apply dec_le. +Qed. + +Theorem not_eq : (x,y:nat) ~ x=y -> (lt x y) \/ (lt y x). +Intros x y H; Elim (lt_eq_lt_dec x y); [ + Intros H1; Elim H1; [ Auto with arith | Intros H2; Absurd x=y; Assumption] +| Auto with arith]. +Qed. + + +Theorem not_le : (x,y:nat) ~(le x y) -> (gt x y). +Intros x y H; Elim (le_gt_dec x y); + [ Intros H1; Absurd (le x y); Assumption | Trivial with arith ]. +Qed. + +Theorem not_gt : (x,y:nat) ~(gt x y) -> (le x y). +Intros x y H; Elim (le_gt_dec x y); + [ Trivial with arith | Intros H1; Absurd (gt x y); Assumption]. +Qed. + +Theorem not_ge : (x,y:nat) ~(ge x y) -> (lt x y). +Intros x y H; Exact (not_le y x H). +Qed. + +Theorem not_lt : (x,y:nat) ~(lt x y) -> (ge x y). +Intros x y H; Exact (not_gt y x H). +Qed. + |