diff options
Diffstat (limited to 'theories7/Arith/Compare.v')
-rwxr-xr-x | theories7/Arith/Compare.v | 60 |
1 files changed, 0 insertions, 60 deletions
diff --git a/theories7/Arith/Compare.v b/theories7/Arith/Compare.v deleted file mode 100755 index 1bca3fbe..00000000 --- a/theories7/Arith/Compare.v +++ /dev/null @@ -1,60 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Compare.v,v 1.1.2.1 2004/07/16 19:31:23 herbelin Exp $ i*) - -(** Equality is decidable on [nat] *) -V7only [Import nat_scope.]. -Open Local Scope nat_scope. - -(* -Lemma not_eq_sym : (A:Set)(p,q:A)(~p=q) -> ~(q=p). -Proof sym_not_eq. -Hints Immediate not_eq_sym : arith. -*) -Notation not_eq_sym := sym_not_eq. - -Implicit Variables Type m,n,p,q:nat. - -Require Arith. -Require Peano_dec. -Require Compare_dec. - -Definition le_or_le_S := le_le_S_dec. - -Definition compare := gt_eq_gt_dec. - -Lemma le_dec : (n,m:nat) {le n m} + {le m n}. -Proof le_ge_dec. - -Definition lt_or_eq := [n,m:nat]{(gt m n)}+{n=m}. - -Lemma le_decide : (n,m:nat)(le n m)->(lt_or_eq n m). -Proof le_lt_eq_dec. - -Lemma le_le_S_eq : (p,q:nat)(le p q)->((le (S p) q)\/(p=q)). -Proof le_lt_or_eq. - -(* By special request of G. Kahn - Used in Group Theory *) -Lemma discrete_nat : (m, n: nat) (lt m n) -> - (S m) = n \/ (EX r: nat | n = (S (S (plus m r)))). -Proof. -Intros m n H. -LApply (lt_le_S m n); Auto with arith. -Intro H'; LApply (le_lt_or_eq (S m) n); Auto with arith. -NewInduction 1; Auto with arith. -Right; Exists (minus n (S (S m))); Simpl. -Rewrite (plus_sym m (minus n (S (S m)))). -Rewrite (plus_n_Sm (minus n (S (S m))) m). -Rewrite (plus_n_Sm (minus n (S (S m))) (S m)). -Rewrite (plus_sym (minus n (S (S m))) (S (S m))); Auto with arith. -Qed. - -Require Export Wf_nat. - -Require Export Min. |