summaryrefslogtreecommitdiff
path: root/theories7/Arith/Bool_nat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Arith/Bool_nat.v')
-rw-r--r--theories7/Arith/Bool_nat.v43
1 files changed, 0 insertions, 43 deletions
diff --git a/theories7/Arith/Bool_nat.v b/theories7/Arith/Bool_nat.v
deleted file mode 100644
index c36f8f15..00000000
--- a/theories7/Arith/Bool_nat.v
+++ /dev/null
@@ -1,43 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Bool_nat.v,v 1.1.2.1 2004/07/16 19:31:23 herbelin Exp $ *)
-
-Require Export Compare_dec.
-Require Export Peano_dec.
-Require Sumbool.
-
-V7only [Import nat_scope.].
-Open Local Scope nat_scope.
-
-Implicit Variables Type m,n,x,y:nat.
-
-(** The decidability of equality and order relations over
- type [nat] give some boolean functions with the adequate specification. *)
-
-Definition notzerop := [n:nat] (sumbool_not ? ? (zerop n)).
-Definition lt_ge_dec : (x,y:nat){(lt x y)}+{(ge x y)} :=
- [n,m:nat] (sumbool_not ? ? (le_lt_dec m n)).
-
-Definition nat_lt_ge_bool :=
- [x,y:nat](bool_of_sumbool (lt_ge_dec x y)).
-Definition nat_ge_lt_bool :=
- [x,y:nat](bool_of_sumbool (sumbool_not ? ? (lt_ge_dec x y))).
-
-Definition nat_le_gt_bool :=
- [x,y:nat](bool_of_sumbool (le_gt_dec x y)).
-Definition nat_gt_le_bool :=
- [x,y:nat](bool_of_sumbool (sumbool_not ? ? (le_gt_dec x y))).
-
-Definition nat_eq_bool :=
- [x,y:nat](bool_of_sumbool (eq_nat_dec x y)).
-Definition nat_noteq_bool :=
- [x,y:nat](bool_of_sumbool (sumbool_not ? ? (eq_nat_dec x y))).
-
-Definition zerop_bool := [x:nat](bool_of_sumbool (zerop x)).
-Definition notzerop_bool := [x:nat](bool_of_sumbool (notzerop x)).