diff options
Diffstat (limited to 'theories7/Arith/Between.v')
-rwxr-xr-x | theories7/Arith/Between.v | 185 |
1 files changed, 0 insertions, 185 deletions
diff --git a/theories7/Arith/Between.v b/theories7/Arith/Between.v deleted file mode 100755 index b3fef325..00000000 --- a/theories7/Arith/Between.v +++ /dev/null @@ -1,185 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Between.v,v 1.1.2.1 2004/07/16 19:31:23 herbelin Exp $ i*) - -Require Le. -Require Lt. - -V7only [Import nat_scope.]. -Open Local Scope nat_scope. - -Implicit Variables Type k,l,p,q,r:nat. - -Section Between. -Variables P,Q : nat -> Prop. - -Inductive between [k:nat] : nat -> Prop - := bet_emp : (between k k) - | bet_S : (l:nat)(between k l)->(P l)->(between k (S l)). - -Hint constr_between : arith v62 := Constructors between. - -Lemma bet_eq : (k,l:nat)(l=k)->(between k l). -Proof. -NewInduction 1; Auto with arith. -Qed. - -Hints Resolve bet_eq : arith v62. - -Lemma between_le : (k,l:nat)(between k l)->(le k l). -Proof. -NewInduction 1; Auto with arith. -Qed. -Hints Immediate between_le : arith v62. - -Lemma between_Sk_l : (k,l:nat)(between k l)->(le (S k) l)->(between (S k) l). -Proof. -NewInduction 1. -Intros; Absurd (le (S k) k); Auto with arith. -NewDestruct H; Auto with arith. -Qed. -Hints Resolve between_Sk_l : arith v62. - -Lemma between_restr : - (k,l,m:nat)(le k l)->(le l m)->(between k m)->(between l m). -Proof. -NewInduction 1; Auto with arith. -Qed. - -Inductive exists [k:nat] : nat -> Prop - := exists_S : (l:nat)(exists k l)->(exists k (S l)) - | exists_le: (l:nat)(le k l)->(Q l)->(exists k (S l)). - -Hint constr_exists : arith v62 := Constructors exists. - -Lemma exists_le_S : (k,l:nat)(exists k l)->(le (S k) l). -Proof. -NewInduction 1; Auto with arith. -Qed. - -Lemma exists_lt : (k,l:nat)(exists k l)->(lt k l). -Proof exists_le_S. -Hints Immediate exists_le_S exists_lt : arith v62. - -Lemma exists_S_le : (k,l:nat)(exists k (S l))->(le k l). -Proof. -Intros; Apply le_S_n; Auto with arith. -Qed. -Hints Immediate exists_S_le : arith v62. - -Definition in_int := [p,q,r:nat](le p r)/\(lt r q). - -Lemma in_int_intro : (p,q,r:nat)(le p r)->(lt r q)->(in_int p q r). -Proof. -Red; Auto with arith. -Qed. -Hints Resolve in_int_intro : arith v62. - -Lemma in_int_lt : (p,q,r:nat)(in_int p q r)->(lt p q). -Proof. -NewInduction 1; Intros. -Apply le_lt_trans with r; Auto with arith. -Qed. - -Lemma in_int_p_Sq : - (p,q,r:nat)(in_int p (S q) r)->((in_int p q r) \/ <nat>r=q). -Proof. -NewInduction 1; Intros. -Elim (le_lt_or_eq r q); Auto with arith. -Qed. - -Lemma in_int_S : (p,q,r:nat)(in_int p q r)->(in_int p (S q) r). -Proof. -NewInduction 1;Auto with arith. -Qed. -Hints Resolve in_int_S : arith v62. - -Lemma in_int_Sp_q : (p,q,r:nat)(in_int (S p) q r)->(in_int p q r). -Proof. -NewInduction 1; Auto with arith. -Qed. -Hints Immediate in_int_Sp_q : arith v62. - -Lemma between_in_int : (k,l:nat)(between k l)->(r:nat)(in_int k l r)->(P r). -Proof. -NewInduction 1; Intros. -Absurd (lt k k); Auto with arith. -Apply in_int_lt with r; Auto with arith. -Elim (in_int_p_Sq k l r); Intros; Auto with arith. -Rewrite H2; Trivial with arith. -Qed. - -Lemma in_int_between : - (k,l:nat)(le k l)->((r:nat)(in_int k l r)->(P r))->(between k l). -Proof. -NewInduction 1; Auto with arith. -Qed. - -Lemma exists_in_int : - (k,l:nat)(exists k l)->(EX m:nat | (in_int k l m) & (Q m)). -Proof. -NewInduction 1. -Case IHexists; Intros p inp Qp; Exists p; Auto with arith. -Exists l; Auto with arith. -Qed. - -Lemma in_int_exists : (k,l,r:nat)(in_int k l r)->(Q r)->(exists k l). -Proof. -NewDestruct 1; Intros. -Elim H0; Auto with arith. -Qed. - -Lemma between_or_exists : - (k,l:nat)(le k l)->((n:nat)(in_int k l n)->((P n)\/(Q n))) - ->((between k l)\/(exists k l)). -Proof. -NewInduction 1; Intros; Auto with arith. -Elim IHle; Intro; Auto with arith. -Elim (H0 m); Auto with arith. -Qed. - -Lemma between_not_exists : (k,l:nat)(between k l)-> - ((n:nat)(in_int k l n) -> (P n) -> ~(Q n)) - -> ~(exists k l). -Proof. -NewInduction 1; Red; Intros. -Absurd (lt k k); Auto with arith. -Absurd (Q l); Auto with arith. -Elim (exists_in_int k (S l)); Auto with arith; Intros l' inl' Ql'. -Replace l with l'; Auto with arith. -Elim inl'; Intros. -Elim (le_lt_or_eq l' l); Auto with arith; Intros. -Absurd (exists k l); Auto with arith. -Apply in_int_exists with l'; Auto with arith. -Qed. - -Inductive P_nth [init:nat] : nat->nat->Prop - := nth_O : (P_nth init init O) - | nth_S : (k,l:nat)(n:nat)(P_nth init k n)->(between (S k) l) - ->(Q l)->(P_nth init l (S n)). - -Lemma nth_le : (init,l,n:nat)(P_nth init l n)->(le init l). -Proof. -NewInduction 1; Intros; Auto with arith. -Apply le_trans with (S k); Auto with arith. -Qed. - -Definition eventually := [n:nat](EX k:nat | (le k n) & (Q k)). - -Lemma event_O : (eventually O)->(Q O). -Proof. -NewInduction 1; Intros. -Replace O with x; Auto with arith. -Qed. - -End Between. - -Hints Resolve nth_O bet_S bet_emp bet_eq between_Sk_l exists_S exists_le - in_int_S in_int_intro : arith v62. -Hints Immediate in_int_Sp_q exists_le_S exists_S_le : arith v62. |