diff options
Diffstat (limited to 'theories/ZArith')
-rw-r--r-- | theories/ZArith/Znumtheory.v | 886 |
1 files changed, 388 insertions, 498 deletions
diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v index b74f7585..e722b679 100644 --- a/theories/ZArith/Znumtheory.v +++ b/theories/ZArith/Znumtheory.v @@ -6,21 +6,23 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Znumtheory.v 8853 2006-05-23 18:17:38Z herbelin $ i*) +(*i $Id: Znumtheory.v 8990 2006-06-26 13:57:44Z notin $ i*) Require Import ZArith_base. Require Import ZArithRing. Require Import Zcomplements. Require Import Zdiv. +Require Import Ndigits. +Require Import Wf_nat. Open Local Scope Z_scope. (** This file contains some notions of number theory upon Z numbers: - a divisibility predicate [Zdivide] - a gcd predicate [gcd] - Euclid algorithm [euclid] - - an efficient [Zgcd] function - a relatively prime predicate [rel_prime] - a prime predicate [prime] + - an efficient [Zgcd] function *) (** * Divisibility *) @@ -215,6 +217,16 @@ Proof. constructor; auto with zarith. Qed. +Lemma Zis_gcd_1 : forall a, Zis_gcd a 1 1. +Proof. +constructor; auto with zarith. +Qed. + +Lemma Zis_gcd_refl : forall a, Zis_gcd a a a. +Proof. +constructor; auto with zarith. +Qed. + Lemma Zis_gcd_minus : forall a b d:Z, Zis_gcd a (- b) d -> Zis_gcd b a d. Proof. simple induction 1; constructor; intuition. @@ -225,6 +237,14 @@ Proof. simple induction 1; constructor; intuition. Qed. +Lemma Zis_gcd_0_abs : forall a:Z, Zis_gcd 0 a (Zabs a). +Proof. +intros a. +apply Zabs_ind. +intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto. +intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto. +Qed. + Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith. (** * Extended Euclid algorithm. *) @@ -366,477 +386,7 @@ replace (c * (u * a + v * b)) with (u * (c * a) + v * (c * b)). rewrite H6; rewrite H7; ring. ring. Qed. - -Lemma Zis_gcd_0_abs : forall b, - Zis_gcd 0 b (Zabs b) /\ Zabs b >= 0 /\ 0 = Zabs b * 0 /\ b = Zabs b * Zsgn b. -Proof. -intro b. -elim (Z_le_lt_eq_dec _ _ (Zabs_pos b)). -intros H0; split. -apply Zabs_ind. -intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto. -intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto. -repeat split; auto with zarith. -symmetry; apply Zabs_Zsgn. - -intros H0; rewrite <- H0. -rewrite <- (Zabs_Zsgn b); rewrite <- H0; simpl in |- *. -split; [ apply Zis_gcd_0 | idtac ]; auto with zarith. -Qed. - - -(** We could obtain a [Zgcd] function via [euclid]. But we propose - here a more direct version of a [Zgcd], that can compute within Coq. - For that, we use an explicit measure in [nat], and we proved later - that using [2(d+1)] is enough, where [d] is the number of binary digits - of the first argument. *) - -Fixpoint Zgcdn (n:nat) : Z -> Z -> Z := fun a b => - match n with - | O => 1 (* arbitrary, since n should be big enough *) - | S n => match a with - | Z0 => Zabs b - | Zpos _ => Zgcdn n (Zmod b a) a - | Zneg a => Zgcdn n (Zmod b (Zpos a)) (Zpos a) - end - end. - -(* For technical reason, we don't use [Ndigit.Psize] but this - ad-hoc version: [Psize p = S (Psiz p)]. *) - -Fixpoint Psiz (p:positive) : nat := - match p with - | xH => O - | xI p => S (Psiz p) - | xO p => S (Psiz p) - end. - -Definition Zgcd_bound (a:Z) := match a with - | Z0 => S O - | Zpos p => let n := Psiz p in S (S (n+n)) - | Zneg p => let n := Psiz p in S (S (n+n)) -end. - -Definition Zgcd a b := Zgcdn (Zgcd_bound a) a b. - -(** A first obvious fact : [Zgcd a b] is positive. *) - -Lemma Zgcdn_is_pos : forall n a b, - 0 <= Zgcdn n a b. -Proof. -induction n. -simpl; auto with zarith. -destruct a; simpl; intros; auto with zarith; auto. -Qed. - -Lemma Zgcd_is_pos : forall a b, 0 <= Zgcd a b. -Proof. -intros; unfold Zgcd; apply Zgcdn_is_pos; auto. -Qed. - -(** We now prove that Zgcd is indeed a gcd. *) - -(** 1) We prove a weaker & easier bound. *) - -Lemma Zgcdn_linear_bound : forall n a b, - Zabs a < Z_of_nat n -> Zis_gcd a b (Zgcdn n a b). -Proof. -induction n. -simpl; intros. -elimtype False; generalize (Zabs_pos a); omega. -destruct a; intros; simpl; - [ generalize (Zis_gcd_0_abs b); intuition | | ]; - unfold Zmod; - generalize (Z_div_mod b (Zpos p) (refl_equal Gt)); - destruct (Zdiv_eucl b (Zpos p)) as (q,r); - intros (H0,H1); - rewrite inj_S in H; simpl Zabs in H; - assert (H2: Zabs r < Z_of_nat n) by (rewrite Zabs_eq; auto with zarith); - assert (IH:=IHn r (Zpos p) H2); clear IHn; - simpl in IH |- *; - rewrite H0. - apply Zis_gcd_for_euclid2; auto. - apply Zis_gcd_minus; apply Zis_gcd_sym. - apply Zis_gcd_for_euclid2; auto. -Qed. - -(** 2) For Euclid's algorithm, the worst-case situation corresponds - to Fibonacci numbers. Let's define them: *) - -Fixpoint fibonacci (n:nat) : Z := - match n with - | O => 1 - | S O => 1 - | S (S n as p) => fibonacci p + fibonacci n - end. - -Lemma fibonacci_pos : forall n, 0 <= fibonacci n. -Proof. -cut (forall N n, (n<N)%nat -> 0<=fibonacci n). -eauto. -induction N. -inversion 1. -intros. -destruct n. -simpl; auto with zarith. -destruct n. -simpl; auto with zarith. -change (0 <= fibonacci (S n) + fibonacci n). -generalize (IHN n) (IHN (S n)); omega. -Qed. - -Lemma fibonacci_incr : - forall n m, (n<=m)%nat -> fibonacci n <= fibonacci m. -Proof. -induction 1. -auto with zarith. -apply Zle_trans with (fibonacci m); auto. -clear. -destruct m. -simpl; auto with zarith. -change (fibonacci (S m) <= fibonacci (S m)+fibonacci m). -generalize (fibonacci_pos m); omega. -Qed. - -(** 3) We prove that fibonacci numbers are indeed worst-case: - for a given number [n], if we reach a conclusion about [gcd(a,b)] in - exactly [n+1] loops, then [fibonacci (n+1)<=a /\ fibonacci(n+2)<=b] *) - -Lemma Zgcdn_worst_is_fibonacci : forall n a b, - 0 < a < b -> - Zis_gcd a b (Zgcdn (S n) a b) -> - Zgcdn n a b <> Zgcdn (S n) a b -> - fibonacci (S n) <= a /\ - fibonacci (S (S n)) <= b. -Proof. -induction n. -simpl; intros. -destruct a; omega. -intros. -destruct a; [simpl in *; omega| | destruct H; discriminate]. -revert H1; revert H0. -set (m:=S n) in *; (assert (m=S n) by auto); clearbody m. -pattern m at 2; rewrite H0. -simpl Zgcdn. -unfold Zmod; generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -intros (H1,H2). -destruct H2. -destruct (Zle_lt_or_eq _ _ H2). -generalize (IHn _ _ (conj H4 H3)). -intros H5 H6 H7. -replace (fibonacci (S (S m))) with (fibonacci (S m) + fibonacci m) by auto. -assert (r = Zpos p * (-q) + b) by (rewrite H1; ring). -destruct H5; auto. -pattern r at 1; rewrite H8. -apply Zis_gcd_sym. -apply Zis_gcd_for_euclid2; auto. -apply Zis_gcd_sym; auto. -split; auto. -rewrite H1. -apply Zplus_le_compat; auto. -apply Zle_trans with (Zpos p * 1); auto. -ring (Zpos p * 1); auto. -apply Zmult_le_compat_l. -destruct q. -omega. -assert (0 < Zpos p0) by (compute; auto). -omega. -assert (Zpos p * Zneg p0 < 0) by (compute; auto). -omega. -compute; intros; discriminate. -(* r=0 *) -subst r. -simpl; rewrite H0. -intros. -simpl in H4. -simpl in H5. -destruct n. -simpl in H5. -simpl. -omega. -simpl in H5. -elim H5; auto. -Qed. - -(** 3b) We reformulate the previous result in a more positive way. *) - -Lemma Zgcdn_ok_before_fibonacci : forall n a b, - 0 < a < b -> a < fibonacci (S n) -> - Zis_gcd a b (Zgcdn n a b). -Proof. -destruct a; [ destruct 1; elimtype False; omega | | destruct 1; discriminate]. -cut (forall k n b, - k = (S (nat_of_P p) - n)%nat -> - 0 < Zpos p < b -> Zpos p < fibonacci (S n) -> - Zis_gcd (Zpos p) b (Zgcdn n (Zpos p) b)). -destruct 2; eauto. -clear n; induction k. -intros. -assert (nat_of_P p < n)%nat by omega. -apply Zgcdn_linear_bound. -simpl. -generalize (inj_le _ _ H2). -rewrite inj_S. -rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto. -omega. -intros. -generalize (Zgcdn_worst_is_fibonacci n (Zpos p) b H0); intros. -assert (Zis_gcd (Zpos p) b (Zgcdn (S n) (Zpos p) b)). - apply IHk; auto. - omega. - replace (fibonacci (S (S n))) with (fibonacci (S n)+fibonacci n) by auto. - generalize (fibonacci_pos n); omega. -replace (Zgcdn n (Zpos p) b) with (Zgcdn (S n) (Zpos p) b); auto. -generalize (H2 H3); clear H2 H3; omega. -Qed. - -(** 4) The proposed bound leads to a fibonacci number that is big enough. *) - -Lemma Zgcd_bound_fibonacci : - forall a, 0 < a -> a < fibonacci (Zgcd_bound a). -Proof. -destruct a; [omega| | intro H; discriminate]. -intros _. -induction p. -simpl Zgcd_bound in *. -rewrite Zpos_xI. -rewrite plus_comm; simpl plus. -set (n:=S (Psiz p+Psiz p)) in *. -change (2*Zpos p+1 < - fibonacci (S n) + fibonacci n + fibonacci (S n)). -generalize (fibonacci_pos n). -omega. -simpl Zgcd_bound in *. -rewrite Zpos_xO. -rewrite plus_comm; simpl plus. -set (n:= S (Psiz p +Psiz p)) in *. -change (2*Zpos p < - fibonacci (S n) + fibonacci n + fibonacci (S n)). -generalize (fibonacci_pos n). -omega. -simpl; auto with zarith. -Qed. - -(* 5) the end: we glue everything together and take care of - situations not corresponding to [0<a<b]. *) - -Lemma Zgcd_is_gcd : - forall a b, Zis_gcd a b (Zgcd a b). -Proof. -unfold Zgcd; destruct a; intros. -simpl; generalize (Zis_gcd_0_abs b); intuition. -(*Zpos*) -generalize (Zgcd_bound_fibonacci (Zpos p)). -simpl Zgcd_bound. -set (n:=S (Psiz p+Psiz p)); (assert (n=S (Psiz p+Psiz p)) by auto); clearbody n. -simpl Zgcdn. -unfold Zmod. -generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -intros (H1,H2) H3. -rewrite H1. -apply Zis_gcd_for_euclid2. -destruct H2. -destruct (Zle_lt_or_eq _ _ H0). -apply Zgcdn_ok_before_fibonacci; auto; omega. -subst r n; simpl. -apply Zis_gcd_sym; apply Zis_gcd_0. -(*Zneg*) -generalize (Zgcd_bound_fibonacci (Zpos p)). -simpl Zgcd_bound. -set (n:=S (Psiz p+Psiz p)); (assert (n=S (Psiz p+Psiz p)) by auto); clearbody n. -simpl Zgcdn. -unfold Zmod. -generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -intros (H1,H2) H3. -rewrite H1. -apply Zis_gcd_minus. -apply Zis_gcd_sym. -apply Zis_gcd_for_euclid2. -destruct H2. -destruct (Zle_lt_or_eq _ _ H0). -apply Zgcdn_ok_before_fibonacci; auto; omega. -subst r n; simpl. -apply Zis_gcd_sym; apply Zis_gcd_0. -Qed. - -(** A generalized gcd: it additionnally keeps track of the divisors. *) - -Fixpoint Zggcdn (n:nat) : Z -> Z -> (Z*(Z*Z)) := fun a b => - match n with - | O => (1,(a,b)) (*(Zabs b,(0,Zsgn b))*) - | S n => match a with - | Z0 => (Zabs b,(0,Zsgn b)) - | Zpos _ => - let (q,r) := Zdiv_eucl b a in (* b = q*a+r *) - let (g,p) := Zggcdn n r a in - let (rr,aa) := p in (* r = g *rr /\ a = g * aa *) - (g,(aa,q*aa+rr)) - | Zneg a => - let (q,r) := Zdiv_eucl b (Zpos a) in (* b = q*(-a)+r *) - let (g,p) := Zggcdn n r (Zpos a) in - let (rr,aa) := p in (* r = g*rr /\ (-a) = g * aa *) - (g,(-aa,q*aa+rr)) - end - end. - -Definition Zggcd a b : Z * (Z * Z) := Zggcdn (Zgcd_bound a) a b. - -(** The first component of [Zggcd] is [Zgcd] *) - -Lemma Zggcdn_gcdn : forall n a b, - fst (Zggcdn n a b) = Zgcdn n a b. -Proof. -induction n; simpl; auto. -destruct a; unfold Zmod; simpl; intros; auto; - destruct (Zdiv_eucl b (Zpos p)) as (q,r); - rewrite <- IHn; - destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)); simpl; auto. -Qed. - -Lemma Zggcd_gcd : forall a b, fst (Zggcd a b) = Zgcd a b. -Proof. -intros; unfold Zggcd, Zgcd; apply Zggcdn_gcdn; auto. -Qed. - -(** [Zggcd] always returns divisors that are coherent with its - first output. *) - -Lemma Zggcdn_correct_divisors : forall n a b, - let (g,p) := Zggcdn n a b in - let (aa,bb):=p in - a=g*aa /\ b=g*bb. -Proof. -induction n. -simpl. -split; [destruct a|destruct b]; auto. -intros. -simpl. -destruct a. -rewrite Zmult_comm; simpl. -split; auto. -symmetry; apply Zabs_Zsgn. -generalize (Z_div_mod b (Zpos p)); -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -generalize (IHn r (Zpos p)); -destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)). -intuition. -destruct H0. -compute; auto. -rewrite H; rewrite H1; rewrite H2; ring. -generalize (Z_div_mod b (Zpos p)); -destruct (Zdiv_eucl b (Zpos p)) as (q,r). -destruct 1. -compute; auto. -generalize (IHn r (Zpos p)); -destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)). -intuition. -destruct H0. -replace (Zneg p) with (-Zpos p) by compute; auto. -rewrite H4; ring. -rewrite H; rewrite H4; rewrite H0; ring. -Qed. - -Lemma Zggcd_correct_divisors : forall a b, - let (g,p) := Zggcd a b in - let (aa,bb):=p in - a=g*aa /\ b=g*bb. -Proof. -unfold Zggcd; intros; apply Zggcdn_correct_divisors; auto. -Qed. - -(** Due to the use of an explicit measure, the extraction of [Zgcd] - isn't optimal. We propose here another version [Zgcd_spec] that - doesn't suffer from this problem (but doesn't compute in Coq). *) - -Definition Zgcd_spec_pos : - forall a:Z, - 0 <= a -> forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0}. -Proof. -intros a Ha. -apply - (Zlt_0_rec - (fun a:Z => forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0})); - try assumption. -intro x; case x. -intros _ _ b; exists (Zabs b). -generalize (Zis_gcd_0_abs b); intuition. -intros p Hrec _ b. -generalize (Z_div_mod b (Zpos p)). -case (Zdiv_eucl b (Zpos p)); intros q r Hqr. -elim Hqr; clear Hqr; intros; auto with zarith. -elim (Hrec r H0 (Zpos p)); intros g Hgkl. -inversion_clear H0. -elim (Hgkl H1); clear Hgkl; intros H3 H4. -exists g; intros. -split; auto. -rewrite H. -apply Zis_gcd_for_euclid2; auto. - -intros p _ H b. -elim H; auto. -Defined. - -Definition Zgcd_spec : forall a b:Z, {g : Z | Zis_gcd a b g /\ g >= 0}. -Proof. -intros a; case (Z_gt_le_dec 0 a). -intros; assert (0 <= - a). -omega. -elim (Zgcd_spec_pos (- a) H b); intros g Hgkl. -exists g. -intuition. -intros Ha b; elim (Zgcd_spec_pos a Ha b); intros g; exists g; intuition. -Defined. - -(** A last version aimed at extraction that also returns the divisors. *) - -Definition Zggcd_spec_pos : - forall a:Z, - 0 <= a -> forall b:Z, {p : Z*(Z*Z) | let (g,p):=p in let (aa,bb):=p in - 0 <= a -> Zis_gcd a b g /\ g >= 0 /\ a=g*aa /\ b=g*bb}. -Proof. -intros a Ha. -pattern a; apply Zlt_0_rec; try assumption. -intro x; case x. -intros _ _ b; exists (Zabs b,(0,Zsgn b)). -intros _; apply Zis_gcd_0_abs. - -intros p Hrec _ b. -generalize (Z_div_mod b (Zpos p)). -case (Zdiv_eucl b (Zpos p)); intros q r Hqr. -elim Hqr; clear Hqr; intros; auto with zarith. -destruct (Hrec r H0 (Zpos p)) as ((g,(rr,pp)),Hgkl). -destruct H0. -destruct (Hgkl H0) as (H3,(H4,(H5,H6))). -exists (g,(pp,pp*q+rr)); intros. -split; auto. -rewrite H. -apply Zis_gcd_for_euclid2; auto. -repeat split; auto. -rewrite H; rewrite H6; rewrite H5; ring. - -intros p _ H b. -elim H; auto. -Defined. - -Definition Zggcd_spec : - forall a b:Z, {p : Z*(Z*Z) | let (g,p):=p in let (aa,bb):=p in - Zis_gcd a b g /\ g >= 0 /\ a=g*aa /\ b=g*bb}. -Proof. -intros a; case (Z_gt_le_dec 0 a). -intros; assert (0 <= - a). -omega. -destruct (Zggcd_spec_pos (- a) H b) as ((g,(aa,bb)),Hgkl). -exists (g,(-aa,bb)). -intuition. -rewrite <- Zopp_mult_distr_r. -rewrite <- H2; auto with zarith. -intros Ha b; elim (Zggcd_spec_pos a Ha b); intros p; exists p. - repeat destruct p; intuition. -Defined. (** * Relative primality *) @@ -920,32 +470,25 @@ assert (g <> 0). elim H4; intros. rewrite H2 in H6; subst b; omega. unfold rel_prime in |- *. -elim (Zgcd_spec (a / g) (b / g)); intros g' [H3 H4]. -assert (H5 := Zis_gcd_mult _ _ g _ H3). -rewrite <- Z_div_exact_2 in H5; auto with zarith. -rewrite <- Z_div_exact_2 in H5; auto with zarith. -elim (Zis_gcd_uniqueness_apart_sign _ _ _ _ H1 H5). -intros; rewrite (Zmult_reg_l 1 g' g); auto with zarith. -intros; rewrite (Zmult_reg_l 1 (- g') g); auto with zarith. -pattern g at 1 in |- *; rewrite H6; ring. - -elim H1; intros. -elim H7; intros. -rewrite H9. -replace (q * g) with (0 + q * g). -rewrite Z_mod_plus. -compute in |- *; auto. -omega. -ring. - -elim H1; intros. -elim H6; intros. -rewrite H9. -replace (q * g) with (0 + q * g). -rewrite Z_mod_plus. -compute in |- *; auto. -omega. -ring. +destruct H1. +destruct H1 as (a',H1). +destruct H3 as (b',H3). +replace (a/g) with a'; + [|rewrite H1; rewrite Z_div_mult; auto with zarith]. +replace (b/g) with b'; + [|rewrite H3; rewrite Z_div_mult; auto with zarith]. +constructor. +exists a'; auto with zarith. +exists b'; auto with zarith. +intros x (xa,H5) (xb,H6). +destruct (H4 (x*g)). +exists xa; rewrite Zmult_assoc; rewrite <- H5; auto. +exists xb; rewrite Zmult_assoc; rewrite <- H6; auto. +replace g with (1*g) in H7; auto with zarith. +do 2 rewrite Zmult_assoc in H7. +generalize (Zmult_reg_r _ _ _ H2 H7); clear H7; intros. +rewrite Zmult_1_r in H7. +exists q; auto with zarith. Qed. (** * Primality *) @@ -1045,3 +588,350 @@ case (Zdivide_dec p a); intuition. right; apply Gauss with a; auto with zarith. Qed. + +(** We could obtain a [Zgcd] function via Euclid algorithm. But we propose + here a binary version of [Zgcd], faster and executable within Coq. + + Algorithm: + + gcd 0 b = b + gcd a 0 = a + gcd (2a) (2b) = 2(gcd a b) + gcd (2a+1) (2b) = gcd (2a+1) b + gcd (2a) (2b+1) = gcd a (2b+1) + gcd (2a+1) (2b+1) = gcd (b-a) (2*a+1) + or gcd (a-b) (2*b+1), depending on whether a<b +*) + +Open Scope positive_scope. + +Fixpoint Pgcdn (n: nat) (a b : positive) { struct n } : positive := + match n with + | O => 1 + | S n => + match a,b with + | xH, _ => 1 + | _, xH => 1 + | xO a, xO b => xO (Pgcdn n a b) + | a, xO b => Pgcdn n a b + | xO a, b => Pgcdn n a b + | xI a', xI b' => match Pcompare a' b' Eq with + | Eq => a + | Lt => Pgcdn n (b'-a') a + | Gt => Pgcdn n (a'-b') b + end + end + end. + +Fixpoint Pggcdn (n: nat) (a b : positive) { struct n } : (positive*(positive*positive)) := + match n with + | O => (1,(a,b)) + | S n => + match a,b with + | xH, b => (1,(1,b)) + | a, xH => (1,(a,1)) + | xO a, xO b => + let (g,p) := Pggcdn n a b in + (xO g,p) + | a, xO b => + let (g,p) := Pggcdn n a b in + let (aa,bb) := p in + (g,(aa, xO bb)) + | xO a, b => + let (g,p) := Pggcdn n a b in + let (aa,bb) := p in + (g,(xO aa, bb)) + | xI a', xI b' => match Pcompare a' b' Eq with + | Eq => (a,(1,1)) + | Lt => + let (g,p) := Pggcdn n (b'-a') a in + let (ba,aa) := p in + (g,(aa, aa + xO ba)) + | Gt => + let (g,p) := Pggcdn n (a'-b') b in + let (ab,bb) := p in + (g,(bb+xO ab, bb)) + end + end + end. + +Definition Pgcd (a b: positive) := Pgcdn (Psize a + Psize b)%nat a b. +Definition Pggcd (a b: positive) := Pggcdn (Psize a + Psize b)%nat a b. + +Open Scope Z_scope. + +Definition Zgcd (a b : Z) : Z := match a,b with + | Z0, _ => Zabs b + | _, Z0 => Zabs a + | Zpos a, Zpos b => Zpos (Pgcd a b) + | Zpos a, Zneg b => Zpos (Pgcd a b) + | Zneg a, Zpos b => Zpos (Pgcd a b) + | Zneg a, Zneg b => Zpos (Pgcd a b) +end. + +Definition Zggcd (a b : Z) : Z*(Z*Z) := match a,b with + | Z0, _ => (Zabs b,(0, Zsgn b)) + | _, Z0 => (Zabs a,(Zsgn a, 0)) + | Zpos a, Zpos b => + let (g,p) := Pggcd a b in + let (aa,bb) := p in + (Zpos g, (Zpos aa, Zpos bb)) + | Zpos a, Zneg b => + let (g,p) := Pggcd a b in + let (aa,bb) := p in + (Zpos g, (Zpos aa, Zneg bb)) + | Zneg a, Zpos b => + let (g,p) := Pggcd a b in + let (aa,bb) := p in + (Zpos g, (Zneg aa, Zpos bb)) + | Zneg a, Zneg b => + let (g,p) := Pggcd a b in + let (aa,bb) := p in + (Zpos g, (Zneg aa, Zneg bb)) +end. + +Lemma Zgcd_is_pos : forall a b, 0 <= Zgcd a b. +Proof. +unfold Zgcd; destruct a; destruct b; auto with zarith. +Qed. + +Lemma Psize_monotone : forall p q, Pcompare p q Eq = Lt -> (Psize p <= Psize q)%nat. +Proof. +induction p; destruct q; simpl; auto with arith; intros; try discriminate. +intros; generalize (Pcompare_Gt_Lt _ _ H); auto with arith. +intros; destruct (Pcompare_Lt_Lt _ _ H); auto with arith; subst; auto. +Qed. + +Lemma Pminus_Zminus : forall a b, Pcompare a b Eq = Lt -> + Zpos (b-a) = Zpos b - Zpos a. +Proof. +intros. +repeat rewrite Zpos_eq_Z_of_nat_o_nat_of_P. +rewrite nat_of_P_minus_morphism. +apply inj_minus1. +apply lt_le_weak. +apply nat_of_P_lt_Lt_compare_morphism; auto. +rewrite ZC4; rewrite H; auto. +Qed. + +Lemma Zis_gcd_even_odd : forall a b g, Zis_gcd (Zpos a) (Zpos (xI b)) g -> + Zis_gcd (Zpos (xO a)) (Zpos (xI b)) g. +Proof. +intros. +destruct H. +constructor; auto. +destruct H as (e,H2); exists (2*e); auto with zarith. +rewrite Zpos_xO; rewrite H2; ring. +intros. +apply H1; auto. +rewrite Zpos_xO in H2. +rewrite Zpos_xI in H3. +apply Gauss with 2; auto. +apply bezout_rel_prime. +destruct H3 as (bb, H3). +apply Bezout_intro with bb (-Zpos b). +omega. +Qed. + +Lemma Pgcdn_correct : forall n a b, (Psize a + Psize b<=n)%nat -> + Zis_gcd (Zpos a) (Zpos b) (Zpos (Pgcdn n a b)). +Proof. +intro n; pattern n; apply lt_wf_ind; clear n; intros. +destruct n. +simpl. +destruct a; simpl in *; try inversion H0. +destruct a. +destruct b; simpl. +case_eq (Pcompare a b Eq); intros. +(* a = xI, b = xI, compare = Eq *) +rewrite (Pcompare_Eq_eq _ _ H1); apply Zis_gcd_refl. +(* a = xI, b = xI, compare = Lt *) +apply Zis_gcd_sym. +apply Zis_gcd_for_euclid with 1. +apply Zis_gcd_sym. +replace (Zpos (xI b) - 1 * Zpos (xI a)) with (Zpos(xO (b - a))). +apply Zis_gcd_even_odd. +apply H; auto. +simpl in *. +assert (Psize (b-a) <= Psize b)%nat. + apply Psize_monotone. + change (Zpos (b-a) < Zpos b). + rewrite (Pminus_Zminus _ _ H1). + assert (0 < Zpos a) by (compute; auto). + omega. +omega. +rewrite Zpos_xO; do 2 rewrite Zpos_xI. +rewrite Pminus_Zminus; auto. +omega. +(* a = xI, b = xI, compare = Gt *) +apply Zis_gcd_for_euclid with 1. +replace (Zpos (xI a) - 1 * Zpos (xI b)) with (Zpos(xO (a - b))). +apply Zis_gcd_sym. +apply Zis_gcd_even_odd. +apply H; auto. +simpl in *. +assert (Psize (a-b) <= Psize a)%nat. + apply Psize_monotone. + change (Zpos (a-b) < Zpos a). + rewrite (Pminus_Zminus b a). + assert (0 < Zpos b) by (compute; auto). + omega. + rewrite ZC4; rewrite H1; auto. +omega. +rewrite Zpos_xO; do 2 rewrite Zpos_xI. +rewrite Pminus_Zminus; auto. +omega. +rewrite ZC4; rewrite H1; auto. +(* a = xI, b = xO *) +apply Zis_gcd_sym. +apply Zis_gcd_even_odd. +apply Zis_gcd_sym. +apply H; auto. +simpl in *; omega. +(* a = xI, b = xH *) +apply Zis_gcd_1. +destruct b; simpl. +(* a = xO, b = xI *) +apply Zis_gcd_even_odd. +apply H; auto. +simpl in *; omega. +(* a = xO, b = xO *) +rewrite (Zpos_xO a); rewrite (Zpos_xO b); rewrite (Zpos_xO (Pgcdn n a b)). +apply Zis_gcd_mult. +apply H; auto. +simpl in *; omega. +(* a = xO, b = xH *) +apply Zis_gcd_1. +(* a = xH *) +simpl; apply Zis_gcd_sym; apply Zis_gcd_1. +Qed. + +Lemma Pgcd_correct : forall a b, Zis_gcd (Zpos a) (Zpos b) (Zpos (Pgcd a b)). +Proof. +unfold Pgcd; intros. +apply Pgcdn_correct; auto. +Qed. + +Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Zgcd a b). +Proof. +destruct a. +intros. +simpl. +apply Zis_gcd_0_abs. +destruct b; simpl. +apply Zis_gcd_0. +apply Pgcd_correct. +apply Zis_gcd_sym. +apply Zis_gcd_minus; simpl. +apply Pgcd_correct. +destruct b; simpl. +apply Zis_gcd_minus; simpl. +apply Zis_gcd_sym. +apply Zis_gcd_0. +apply Zis_gcd_minus; simpl. +apply Zis_gcd_sym. +apply Pgcd_correct. +apply Zis_gcd_sym. +apply Zis_gcd_minus; simpl. +apply Zis_gcd_minus; simpl. +apply Zis_gcd_sym. +apply Pgcd_correct. +Qed. + + +Lemma Pggcdn_gcdn : forall n a b, + fst (Pggcdn n a b) = Pgcdn n a b. +Proof. +induction n. +simpl; auto. +destruct a; destruct b; simpl; auto. +destruct (Pcompare a b Eq); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n (b-a) (xI a)) as (g,(aa,bb)); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n (a-b) (xI b)) as (g,(aa,bb)); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n (xI a) b) as (g,(aa,bb)); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n a (xI b)) as (g,(aa,bb)); simpl; auto. +rewrite <- IHn; destruct (Pggcdn n a b) as (g,(aa,bb)); simpl; auto. +Qed. + +Lemma Pggcd_gcd : forall a b, fst (Pggcd a b) = Pgcd a b. +Proof. +intros; exact (Pggcdn_gcdn (Psize a+Psize b)%nat a b). +Qed. + +Lemma Zggcd_gcd : forall a b, fst (Zggcd a b) = Zgcd a b. +Proof. +destruct a; destruct b; simpl; auto; rewrite <- Pggcd_gcd; +destruct (Pggcd p p0) as (g,(aa,bb)); simpl; auto. +Qed. + +Open Scope positive_scope. + +Lemma Pggcdn_correct_divisors : forall n a b, + let (g,p) := Pggcdn n a b in + let (aa,bb):=p in + (a=g*aa) /\ (b=g*bb). +Proof. +induction n. +simpl; auto. +destruct a; destruct b; simpl; auto. +case_eq (Pcompare a b Eq); intros. +(* Eq *) +rewrite Pmult_comm; simpl; auto. +rewrite (Pcompare_Eq_eq _ _ H); auto. +(* Lt *) +generalize (IHn (b-a) (xI a)); destruct (Pggcdn n (b-a) (xI a)) as (g,(ba,aa)); simpl. +intros (H0,H1); split; auto. +rewrite Pmult_plus_distr_l. +rewrite Pmult_xO_permute_r. +rewrite <- H1; rewrite <- H0. +simpl; f_equal; symmetry. +apply Pplus_minus; auto. +rewrite ZC4; rewrite H; auto. +(* Gt *) +generalize (IHn (a-b) (xI b)); destruct (Pggcdn n (a-b) (xI b)) as (g,(ab,bb)); simpl. +intros (H0,H1); split; auto. +rewrite Pmult_plus_distr_l. +rewrite Pmult_xO_permute_r. +rewrite <- H1; rewrite <- H0. +simpl; f_equal; symmetry. +apply Pplus_minus; auto. +(* Then... *) +generalize (IHn (xI a) b); destruct (Pggcdn n (xI a) b) as (g,(ab,bb)); simpl. +intros (H0,H1); split; auto. +rewrite Pmult_xO_permute_r; rewrite H1; auto. +generalize (IHn a (xI b)); destruct (Pggcdn n a (xI b)) as (g,(ab,bb)); simpl. +intros (H0,H1); split; auto. +rewrite Pmult_xO_permute_r; rewrite H0; auto. +generalize (IHn a b); destruct (Pggcdn n a b) as (g,(ab,bb)); simpl. +intros (H0,H1); split; subst; auto. +Qed. + +Lemma Pggcd_correct_divisors : forall a b, + let (g,p) := Pggcd a b in + let (aa,bb):=p in + (a=g*aa) /\ (b=g*bb). +Proof. +intros a b; exact (Pggcdn_correct_divisors (Psize a + Psize b)%nat a b). +Qed. + +Open Scope Z_scope. + +Lemma Zggcd_correct_divisors : forall a b, + let (g,p) := Zggcd a b in + let (aa,bb):=p in + (a=g*aa) /\ (b=g*bb). +Proof. +destruct a; destruct b; simpl; auto; try solve [rewrite Pmult_comm; simpl; auto]; +generalize (Pggcd_correct_divisors p p0); destruct (Pggcd p p0) as (g,(aa,bb)); +destruct 1; subst; auto. +Qed. + +Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}. +Proof. + intros x y; exists (Zgcd x y). + split; [apply Zgcd_is_gcd | apply Zgcd_is_pos]. +Qed. + + + + |