diff options
Diffstat (limited to 'theories/ZArith')
-rw-r--r-- | theories/ZArith/BinInt.v | 6 | ||||
-rw-r--r-- | theories/ZArith/Wf_Z.v | 60 | ||||
-rw-r--r-- | theories/ZArith/ZArith.v | 2 | ||||
-rw-r--r-- | theories/ZArith/ZArith_base.v | 6 | ||||
-rw-r--r-- | theories/ZArith/ZArith_dec.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Zabs.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Zbinary.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Zbool.v | 4 | ||||
-rw-r--r-- | theories/ZArith/Zcomplements.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Zdiv.v | 4 | ||||
-rw-r--r-- | theories/ZArith/Zeven.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Zhints.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Zlogarithm.v | 3 | ||||
-rw-r--r-- | theories/ZArith/Zmax.v | 108 | ||||
-rw-r--r-- | theories/ZArith/Zmin.v | 112 | ||||
-rw-r--r-- | theories/ZArith/Zminmax.v | 82 | ||||
-rw-r--r-- | theories/ZArith/Zmisc.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Znat.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Znumtheory.v | 19 | ||||
-rw-r--r-- | theories/ZArith/Zorder.v | 28 | ||||
-rw-r--r-- | theories/ZArith/Zpower.v | 2 | ||||
-rw-r--r-- | theories/ZArith/Zsqrt.v | 6 | ||||
-rw-r--r-- | theories/ZArith/Zwf.v | 2 | ||||
-rw-r--r-- | theories/ZArith/auxiliary.v | 2 |
24 files changed, 373 insertions, 89 deletions
diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v index 11fa3872..02cf5f2d 100644 --- a/theories/ZArith/BinInt.v +++ b/theories/ZArith/BinInt.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: BinInt.v,v 1.5.2.1 2004/07/16 19:31:20 herbelin Exp $ i*) +(*i $Id: BinInt.v 6295 2004-11-12 16:40:39Z gregoire $ i*) (***********************************************************) (** Binary Integers (Pierre Crégut, CNET, Lannion, France) *) @@ -17,6 +17,8 @@ Require Export Pnat. Require Import BinNat. Require Import Plus. Require Import Mult. + +Unset Boxed Definitions. (**********************************************************************) (** Binary integer numbers *) @@ -1035,4 +1037,4 @@ Definition Zabs_N (z:Z) := Definition Z_of_N (x:N) := match x with | N0 => Z0 | Npos p => Zpos p - end.
\ No newline at end of file + end. diff --git a/theories/ZArith/Wf_Z.v b/theories/ZArith/Wf_Z.v index 069ddd42..af1fdd0b 100644 --- a/theories/ZArith/Wf_Z.v +++ b/theories/ZArith/Wf_Z.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Wf_Z.v,v 1.20.2.1 2004/07/16 19:31:20 herbelin Exp $ i*) +(*i $Id: Wf_Z.v 6984 2005-05-02 10:50:15Z herbelin $ i*) Require Import BinInt. Require Import Zcompare. @@ -176,11 +176,11 @@ apply X; auto; unfold R in |- *; intuition; apply Zlt_pred. intros; elim H; simpl in |- *; trivial. Qed. -(** A more general induction principal using [Zlt]. *) +(** A more general induction principle on non-negative numbers using [Zlt]. *) -Lemma Z_lt_rec : +Lemma Zlt_0_rec : forall P:Z -> Type, - (forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) -> + (forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> 0 <= x -> P x) -> forall x:Z, 0 <= x -> P x. Proof. intros P Hrec z; pattern z in |- *; apply (well_founded_induction_type R_wf). @@ -189,10 +189,29 @@ apply Hrec; intros. assert (H2 : 0 < 0). apply Zle_lt_trans with y; intuition. inversion H2. +assumption. firstorder. unfold Zle, Zcompare in H; elim H; auto. Defined. +Lemma Zlt_0_ind : + forall P:Z -> Prop, + (forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> 0 <= x -> P x) -> + forall x:Z, 0 <= x -> P x. +Proof. +exact Zlt_0_rec. +Qed. + +(** Obsolete version of [Zlt] induction principle on non-negative numbers *) + +Lemma Z_lt_rec : + forall P:Z -> Type, + (forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) -> + forall x:Z, 0 <= x -> P x. +Proof. +intros P Hrec; apply Zlt_0_rec; auto. +Qed. + Lemma Z_lt_induction : forall P:Z -> Prop, (forall x:Z, (forall y:Z, 0 <= y < x -> P y) -> P x) -> @@ -201,4 +220,37 @@ Proof. exact Z_lt_rec. Qed. +(** An even more general induction principle using [Zlt]. *) + +Lemma Zlt_lower_bound_rec : + forall P:Z -> Type, forall z:Z, + (forall x:Z, (forall y:Z, z <= y < x -> P y) -> z <= x -> P x) -> + forall x:Z, z <= x -> P x. +Proof. +intros P z Hrec x. +assert (Hexpand : forall x, x = x - z + z). + intro; unfold Zminus; rewrite <- Zplus_assoc; rewrite Zplus_opp_l; + rewrite Zplus_0_r; trivial. +intro Hz. +rewrite (Hexpand x); pattern (x - z) in |- *; apply Zlt_0_rec. +2: apply Zplus_le_reg_r with z; rewrite <- Hexpand; assumption. +intros x0 Hlt_x0 H. +apply Hrec. + 2: change z with (0+z); apply Zplus_le_compat_r; assumption. + intro y; rewrite (Hexpand y); intros. +destruct H0. +apply Hlt_x0. +split. + apply Zplus_le_reg_r with z; assumption. + apply Zplus_lt_reg_r with z; assumption. +Qed. + +Lemma Zlt_lower_bound_ind : + forall P:Z -> Prop, forall z:Z, + (forall x:Z, (forall y:Z, z <= y < x -> P y) -> z <= x -> P x) -> + forall x:Z, z <= x -> P x. +Proof. +exact Zlt_lower_bound_rec. +Qed. + End Efficient_Rec. diff --git a/theories/ZArith/ZArith.v b/theories/ZArith/ZArith.v index 7e361621..45749fa3 100644 --- a/theories/ZArith/ZArith.v +++ b/theories/ZArith/ZArith.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: ZArith.v,v 1.5.2.2 2004/08/03 17:56:30 herbelin Exp $ i*) +(*i $Id: ZArith.v 6013 2004-08-03 17:56:19Z herbelin $ i*) (** Library for manipulating integers based on binary encoding *) diff --git a/theories/ZArith/ZArith_base.v b/theories/ZArith/ZArith_base.v index 694e071e..20fd6b5f 100644 --- a/theories/ZArith/ZArith_base.v +++ b/theories/ZArith/ZArith_base.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(* $Id: ZArith_base.v,v 1.5.2.1 2004/07/16 19:31:20 herbelin Exp $ *) +(* $Id: ZArith_base.v 8032 2006-02-12 21:20:48Z herbelin $ *) (** Library for manipulating integers based on binary encoding. These are the basic modules, required by [Omega] and [Ring] for instance. @@ -19,6 +19,8 @@ Require Export Zcompare. Require Export Zorder. Require Export Zeven. Require Export Zmin. +Require Export Zmax. +Require Export Zminmax. Require Export Zabs. Require Export Znat. Require Export auxiliary. @@ -31,4 +33,4 @@ Hint Resolve Zle_refl Zplus_comm Zplus_assoc Zmult_comm Zmult_assoc Zplus_0_l Zplus_0_r Zmult_1_l Zplus_opp_l Zplus_opp_r Zmult_plus_distr_l Zmult_plus_distr_r: zarith. -Require Export Zhints.
\ No newline at end of file +Require Export Zhints. diff --git a/theories/ZArith/ZArith_dec.v b/theories/ZArith/ZArith_dec.v index dbd0df6c..40c5860c 100644 --- a/theories/ZArith/ZArith_dec.v +++ b/theories/ZArith/ZArith_dec.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: ZArith_dec.v,v 1.11.2.1 2004/07/16 19:31:20 herbelin Exp $ i*) +(*i $Id: ZArith_dec.v 5920 2004-07-16 20:01:26Z herbelin $ i*) Require Import Sumbool. diff --git a/theories/ZArith/Zabs.v b/theories/ZArith/Zabs.v index 90e4c2a4..fed6ad76 100644 --- a/theories/ZArith/Zabs.v +++ b/theories/ZArith/Zabs.v @@ -5,7 +5,7 @@ (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zabs.v,v 1.4.2.1 2004/07/16 19:31:21 herbelin Exp $ i*) +(*i $Id: Zabs.v 5920 2004-07-16 20:01:26Z herbelin $ i*) (** Binary Integers (Pierre Crégut (CNET, Lannion, France) *) diff --git a/theories/ZArith/Zbinary.v b/theories/ZArith/Zbinary.v index fa5f00dc..353f0d5d 100644 --- a/theories/ZArith/Zbinary.v +++ b/theories/ZArith/Zbinary.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zbinary.v,v 1.6.2.1 2004/07/16 19:31:21 herbelin Exp $ i*) +(*i $Id: Zbinary.v 5920 2004-07-16 20:01:26Z herbelin $ i*) (** Bit vectors interpreted as integers. Contribution by Jean Duprat (ENS Lyon). *) diff --git a/theories/ZArith/Zbool.v b/theories/ZArith/Zbool.v index bb8abef4..a195b951 100644 --- a/theories/ZArith/Zbool.v +++ b/theories/ZArith/Zbool.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(* $Id: Zbool.v,v 1.4.2.1 2004/07/16 19:31:21 herbelin Exp $ *) +(* $Id: Zbool.v 6295 2004-11-12 16:40:39Z gregoire $ *) Require Import BinInt. Require Import Zeven. @@ -15,6 +15,8 @@ Require Import Zcompare. Require Import ZArith_dec. Require Import Sumbool. +Unset Boxed Definitions. + (** The decidability of equality and order relations over type [Z] give some boolean functions with the adequate specification. *) diff --git a/theories/ZArith/Zcomplements.v b/theories/ZArith/Zcomplements.v index b60cd37c..817fbc1b 100644 --- a/theories/ZArith/Zcomplements.v +++ b/theories/ZArith/Zcomplements.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zcomplements.v,v 1.26.2.1 2004/07/16 19:31:21 herbelin Exp $ i*) +(*i $Id: Zcomplements.v 5920 2004-07-16 20:01:26Z herbelin $ i*) Require Import ZArithRing. Require Import ZArith_base. diff --git a/theories/ZArith/Zdiv.v b/theories/ZArith/Zdiv.v index 84eb2259..e391d087 100644 --- a/theories/ZArith/Zdiv.v +++ b/theories/ZArith/Zdiv.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zdiv.v,v 1.21.2.1 2004/07/16 19:31:21 herbelin Exp $ i*) +(*i $Id: Zdiv.v 6295 2004-11-12 16:40:39Z gregoire $ i*) (* Contribution by Claude Marché and Xavier Urbain *) @@ -36,7 +36,7 @@ Open Local Scope Z_scope. *) -Fixpoint Zdiv_eucl_POS (a:positive) (b:Z) {struct a} : +Unboxed Fixpoint Zdiv_eucl_POS (a:positive) (b:Z) {struct a} : Z * Z := match a with | xH => if Zge_bool b 2 then (0, 1) else (1, 0) diff --git a/theories/ZArith/Zeven.v b/theories/ZArith/Zeven.v index a4a9abde..72d2d828 100644 --- a/theories/ZArith/Zeven.v +++ b/theories/ZArith/Zeven.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zeven.v,v 1.3.2.1 2004/07/16 19:31:21 herbelin Exp $ i*) +(*i $Id: Zeven.v 5920 2004-07-16 20:01:26Z herbelin $ i*) Require Import BinInt. diff --git a/theories/ZArith/Zhints.v b/theories/ZArith/Zhints.v index a9ee2c87..d0a2d2a0 100644 --- a/theories/ZArith/Zhints.v +++ b/theories/ZArith/Zhints.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zhints.v,v 1.8.2.1 2004/07/16 19:31:21 herbelin Exp $ i*) +(*i $Id: Zhints.v 5920 2004-07-16 20:01:26Z herbelin $ i*) (** This file centralizes the lemmas about [Z], classifying them according to the way they can be used in automatic search *) diff --git a/theories/ZArith/Zlogarithm.v b/theories/ZArith/Zlogarithm.v index b575de88..653ee951 100644 --- a/theories/ZArith/Zlogarithm.v +++ b/theories/ZArith/Zlogarithm.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zlogarithm.v,v 1.14.2.1 2004/07/16 19:31:21 herbelin Exp $ i*) +(*i $Id: Zlogarithm.v 6295 2004-11-12 16:40:39Z gregoire $ i*) (**********************************************************************) (** The integer logarithms with base 2. @@ -36,6 +36,7 @@ Fixpoint log_inf (p:positive) : Z := | xO q => Zsucc (log_inf q) (* 2n *) | xI q => Zsucc (log_inf q) (* 2n+1 *) end. + Fixpoint log_sup (p:positive) : Z := match p with | xH => 0 (* 1 *) diff --git a/theories/ZArith/Zmax.v b/theories/ZArith/Zmax.v new file mode 100644 index 00000000..ae3bbf41 --- /dev/null +++ b/theories/ZArith/Zmax.v @@ -0,0 +1,108 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Zmax.v 8032 2006-02-12 21:20:48Z herbelin $ i*) + +Require Import Arith. +Require Import BinInt. +Require Import Zcompare. +Require Import Zorder. + +Open Local Scope Z_scope. + +(**********************************************************************) +(** *** Maximum of two binary integer numbers *) + +Definition Zmax m n := + match m ?= n with + | Eq | Gt => m + | Lt => n + end. + +(** Characterization of maximum on binary integer numbers *) + +Lemma Zmax_case : forall (n m:Z) (P:Z -> Type), P n -> P m -> P (Zmax n m). +Proof. +intros n m P H1 H2; unfold Zmax in |- *; case (n ?= m); auto with arith. +Qed. + +Lemma Zmax_case_strong : forall (n m:Z) (P:Z -> Type), + (m<=n -> P n) -> (n<=m -> P m) -> P (Zmax n m). +Proof. +intros n m P H1 H2; unfold Zmax, Zle, Zge in *. +rewrite <- (Zcompare_antisym n m) in H1. +destruct (n ?= m); (apply H1|| apply H2); discriminate. +Qed. + +(** Least upper bound properties of max *) + +Lemma Zle_max_l : forall n m:Z, n <= Zmax n m. +Proof. +intros; apply Zmax_case_strong; auto with zarith. +Qed. + +Notation Zmax1 := Zle_max_l (only parsing). + +Lemma Zle_max_r : forall n m:Z, m <= Zmax n m. +Proof. +intros; apply Zmax_case_strong; auto with zarith. +Qed. + +Notation Zmax2 := Zle_max_r (only parsing). + +Lemma Zmax_lub : forall n m p:Z, n <= p -> m <= p -> Zmax n m <= p. +Proof. +intros; apply Zmax_case; assumption. +Qed. + +(** Semi-lattice properties of max *) + +Lemma Zmax_idempotent : forall n:Z, Zmax n n = n. +Proof. +intros; apply Zmax_case; auto. +Qed. + +Lemma Zmax_comm : forall n m:Z, Zmax n m = Zmax m n. +Proof. +intros; do 2 apply Zmax_case_strong; intros; + apply Zle_antisym; auto with zarith. +Qed. + +Lemma Zmax_assoc : forall n m p:Z, Zmax n (Zmax m p) = Zmax (Zmax n m) p. +Proof. +intros n m p; repeat apply Zmax_case_strong; intros; + reflexivity || (try apply Zle_antisym); eauto with zarith. +Qed. + +(** Additional properties of max *) + +Lemma Zmax_irreducible_inf : forall n m:Z, Zmax n m = n \/ Zmax n m = m. +Proof. +intros; apply Zmax_case; auto. +Qed. + +Lemma Zmax_le_prime_inf : forall n m p:Z, p <= Zmax n m -> p <= n \/ p <= m. +Proof. +intros n m p; apply Zmax_case; auto. +Qed. + +(** Operations preserving max *) + +Lemma Zsucc_max_distr : + forall n m:Z, Zsucc (Zmax n m) = Zmax (Zsucc n) (Zsucc m). +Proof. +intros n m; unfold Zmax in |- *; rewrite (Zcompare_succ_compat n m); + elim_compare n m; intros E; rewrite E; auto with arith. +Qed. + +Lemma Zplus_max_distr_r : forall n m p:Z, Zmax (n + p) (m + p) = Zmax n m + p. +Proof. +intros x y n; unfold Zmax in |- *. +rewrite (Zplus_comm x n); rewrite (Zplus_comm y n); + rewrite (Zcompare_plus_compat x y n). +case (x ?= y); apply Zplus_comm. +Qed. diff --git a/theories/ZArith/Zmin.v b/theories/ZArith/Zmin.v index d48e62c5..d79ebe98 100644 --- a/theories/ZArith/Zmin.v +++ b/theories/ZArith/Zmin.v @@ -5,9 +5,12 @@ (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zmin.v,v 1.3.2.1 2004/07/16 19:31:21 herbelin Exp $ i*) +(*i $Id: Zmin.v 8032 2006-02-12 21:20:48Z herbelin $ i*) -(** Binary Integers (Pierre Crégut (CNET, Lannion, France) *) +(** Initial version from Pierre Crégut (CNET, Lannion, France), 1996. + Further extensions by the Coq development team, with suggestions + from Russell O'Connor (Radbout U., Nijmegen, The Netherlands). + *) Require Import Arith. Require Import BinInt. @@ -17,23 +20,31 @@ Require Import Zorder. Open Local Scope Z_scope. (**********************************************************************) -(** Minimum on binary integer numbers *) +(** *** Minimum on binary integer numbers *) -Definition Zmin (n m:Z) := - match n ?= m return Z with - | Eq => n - | Lt => n +Unboxed Definition Zmin (n m:Z) := + match n ?= m with + | Eq | Lt => n | Gt => m end. -(** Properties of minimum on binary integer numbers *) +(** Characterization of the minimum on binary integer numbers *) -Lemma Zmin_SS : forall n m:Z, Zsucc (Zmin n m) = Zmin (Zsucc n) (Zsucc m). +Lemma Zmin_case_strong : forall (n m:Z) (P:Z -> Type), + (n<=m -> P n) -> (m<=n -> P m) -> P (Zmin n m). Proof. -intros n m; unfold Zmin in |- *; rewrite (Zcompare_succ_compat n m); - elim_compare n m; intros E; rewrite E; auto with arith. +intros n m P H1 H2; unfold Zmin, Zle, Zge in *. +rewrite <- (Zcompare_antisym n m) in H2. +destruct (n ?= m); (apply H1|| apply H2); discriminate. Qed. +Lemma Zmin_case : forall (n m:Z) (P:Z -> Type), P n -> P m -> P (Zmin n m). +Proof. +intros n m P H1 H2; unfold Zmin in |- *; case (n ?= m); auto with arith. +Qed. + +(** Greatest lower bound properties of min *) + Lemma Zle_min_l : forall n m:Z, Zmin n m <= n. Proof. intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E; @@ -50,57 +61,70 @@ intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E; | apply Zle_refl ]. Qed. -Lemma Zmin_case : forall (n m:Z) (P:Z -> Set), P n -> P m -> P (Zmin n m). +Lemma Zmin_glb : forall n m p:Z, p <= n -> p <= m -> p <= Zmin n m. Proof. -intros n m P H1 H2; unfold Zmin in |- *; case (n ?= m); auto with arith. +intros; apply Zmin_case; assumption. Qed. -Lemma Zmin_or : forall n m:Z, Zmin n m = n \/ Zmin n m = m. +(** Semi-lattice properties of min *) + +Lemma Zmin_idempotent : forall n:Z, Zmin n n = n. Proof. -unfold Zmin in |- *; intros; elim (n ?= m); auto. +unfold Zmin in |- *; intros; elim (n ?= n); auto. Qed. -Lemma Zmin_n_n : forall n:Z, Zmin n n = n. +Notation Zmin_n_n := Zmin_idempotent (only parsing). + +Lemma Zmin_comm : forall n m:Z, Zmin n m = Zmin m n. Proof. -unfold Zmin in |- *; intros; elim (n ?= n); auto. +intros n m; unfold Zmin. +rewrite <- (Zcompare_antisym n m). +assert (H:=Zcompare_Eq_eq n m). +destruct (n ?= m); simpl; auto. Qed. -Lemma Zmin_plus : forall n m p:Z, Zmin (n + p) (m + p) = Zmin n m + p. +Lemma Zmin_assoc : forall n m p:Z, Zmin n (Zmin m p) = Zmin (Zmin n m) p. Proof. -intros x y n; unfold Zmin in |- *. -rewrite (Zplus_comm x n); rewrite (Zplus_comm y n); - rewrite (Zcompare_plus_compat x y n). -case (x ?= y); apply Zplus_comm. +intros n m p; repeat apply Zmin_case_strong; intros; + reflexivity || (try apply Zle_antisym); eauto with zarith. Qed. -(**********************************************************************) -(** Maximum of two binary integer numbers *) +(** Additional properties of min *) -Definition Zmax a b := match a ?= b with - | Lt => b - | _ => a - end. +Lemma Zmin_irreducible_inf : forall n m:Z, {Zmin n m = n} + {Zmin n m = m}. +Proof. +unfold Zmin in |- *; intros; elim (n ?= m); auto. +Qed. -(** Properties of maximum on binary integer numbers *) +Lemma Zmin_irreducible : forall n m:Z, Zmin n m = n \/ Zmin n m = m. +Proof. +intros n m; destruct (Zmin_irreducible_inf n m); [left|right]; trivial. +Qed. -Ltac CaseEq name := - generalize (refl_equal name); pattern name at -1 in |- *; case name. +Notation Zmin_or := Zmin_irreducible (only parsing). -Theorem Zmax1 : forall a b, a <= Zmax a b. +Lemma Zmin_le_prime_inf : forall n m p:Z, Zmin n m <= p -> {n <= p} + {m <= p}. Proof. -intros a b; unfold Zmax in |- *; CaseEq (a ?= b); simpl in |- *; - auto with zarith. -unfold Zle in |- *; intros H; rewrite H; red in |- *; intros; discriminate. +intros n m p; apply Zmin_case; auto. Qed. -Theorem Zmax2 : forall a b, b <= Zmax a b. +(** Operations preserving min *) + +Lemma Zsucc_min_distr : + forall n m:Z, Zsucc (Zmin n m) = Zmin (Zsucc n) (Zsucc m). Proof. -intros a b; unfold Zmax in |- *; CaseEq (a ?= b); simpl in |- *; - auto with zarith. -intros H; - (case (Zle_or_lt b a); auto; unfold Zlt in |- *; rewrite H; intros; - discriminate). -intros H; - (case (Zle_or_lt b a); auto; unfold Zlt in |- *; rewrite H; intros; - discriminate). +intros n m; unfold Zmin in |- *; rewrite (Zcompare_succ_compat n m); + elim_compare n m; intros E; rewrite E; auto with arith. Qed. + +Notation Zmin_SS := Zsucc_min_distr (only parsing). + +Lemma Zplus_min_distr_r : forall n m p:Z, Zmin (n + p) (m + p) = Zmin n m + p. +Proof. +intros x y n; unfold Zmin in |- *. +rewrite (Zplus_comm x n); rewrite (Zplus_comm y n); + rewrite (Zcompare_plus_compat x y n). +case (x ?= y); apply Zplus_comm. +Qed. + +Notation Zmin_plus := Zplus_min_distr_r (only parsing). diff --git a/theories/ZArith/Zminmax.v b/theories/ZArith/Zminmax.v new file mode 100644 index 00000000..ebe9318e --- /dev/null +++ b/theories/ZArith/Zminmax.v @@ -0,0 +1,82 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Zminmax.v 8034 2006-02-12 22:08:04Z herbelin $ i*) + +Require Import Zmin Zmax. +Require Import BinInt Zorder. + +Open Local Scope Z_scope. + +(** *** Lattice properties of min and max on Z *) + +(** Absorption *) + +Lemma Zmin_max_absorption_r_r : forall n m, Zmax n (Zmin n m) = n. +Proof. +intros; apply Zmin_case_strong; intro; apply Zmax_case_strong; intro; + reflexivity || apply Zle_antisym; trivial. +Qed. + +Lemma Zmax_min_absorption_r_r : forall n m, Zmin n (Zmax n m) = n. +Proof. +intros; apply Zmax_case_strong; intro; apply Zmin_case_strong; intro; + reflexivity || apply Zle_antisym; trivial. +Qed. + +(** Distributivity *) + +Lemma Zmax_min_distr_r : + forall n m p, Zmax n (Zmin m p) = Zmin (Zmax n m) (Zmax n p). +Proof. +intros. +repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + reflexivity || + apply Zle_antisym; (assumption || eapply Zle_trans; eassumption). +Qed. + +Lemma Zmin_max_distr_r : + forall n m p, Zmin n (Zmax m p) = Zmax (Zmin n m) (Zmin n p). +Proof. +intros. +repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + reflexivity || + apply Zle_antisym; (assumption || eapply Zle_trans; eassumption). +Qed. + +(** Modularity *) + +Lemma Zmax_min_modular_r : + forall n m p, Zmax n (Zmin m (Zmax n p)) = Zmin (Zmax n m) (Zmax n p). +Proof. +intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + reflexivity || + apply Zle_antisym; (assumption || eapply Zle_trans; eassumption). +Qed. + +Lemma Zmin_max_modular_r : + forall n m p, Zmin n (Zmax m (Zmin n p)) = Zmax (Zmin n m) (Zmin n p). +Proof. +intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + reflexivity || + apply Zle_antisym; (assumption || eapply Zle_trans; eassumption). +Qed. + +(** Disassociativity *) + +Lemma max_min_disassoc : forall n m p, Zmin n (Zmax m p) <= Zmax (Zmin n m) p. +Proof. +intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + apply Zle_refl || (assumption || eapply Zle_trans; eassumption). +Qed. + + + + + + + diff --git a/theories/ZArith/Zmisc.v b/theories/ZArith/Zmisc.v index adcaf0ba..8246e324 100644 --- a/theories/ZArith/Zmisc.v +++ b/theories/ZArith/Zmisc.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zmisc.v,v 1.20.2.1 2004/07/16 19:31:22 herbelin Exp $ i*) +(*i $Id: Zmisc.v 5920 2004-07-16 20:01:26Z herbelin $ i*) Require Import BinInt. Require Import Zcompare. diff --git a/theories/ZArith/Znat.v b/theories/ZArith/Znat.v index d051ed74..3e27878c 100644 --- a/theories/ZArith/Znat.v +++ b/theories/ZArith/Znat.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Znat.v,v 1.3.2.1 2004/07/16 19:31:22 herbelin Exp $ i*) +(*i $Id: Znat.v 5920 2004-07-16 20:01:26Z herbelin $ i*) (** Binary Integers (Pierre Crégut, CNET, Lannion, France) *) diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v index 715cdc7d..a1963446 100644 --- a/theories/ZArith/Znumtheory.v +++ b/theories/ZArith/Znumtheory.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Znumtheory.v,v 1.5.2.1 2004/07/16 19:31:22 herbelin Exp $ i*) +(*i $Id: Znumtheory.v 6984 2005-05-02 10:50:15Z herbelin $ i*) Require Import ZArith_base. Require Import ZArithRing. @@ -278,12 +278,12 @@ Lemma euclid_rec : (forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid. Proof. intros v3 Hv3; generalize Hv3; pattern v3 in |- *. -apply Z_lt_rec. +apply Zlt_0_rec. clear v3 Hv3; intros. elim (Z_zerop x); intro. apply Euclid_intro with (u := u1) (v := u2) (d := u3). assumption. -apply H2. +apply H3. rewrite a0; auto with zarith. set (q := u3 / x) in *. assert (Hq : 0 <= u3 - q * x < x). @@ -297,9 +297,9 @@ apply (H (u3 - q * x) Hq (proj1 Hq) v1 v2 x (u1 - q * v1) (u2 - q * v2)). tauto. replace ((u1 - q * v1) * a + (u2 - q * v2) * b) with (u1 * a + u2 * b - q * (v1 * a + v2 * b)). -rewrite H0; rewrite H1; trivial. +rewrite H1; rewrite H2; trivial. ring. -intros; apply H2. +intros; apply H3. apply Zis_gcd_for_euclid with q; assumption. assumption. Qed. @@ -377,11 +377,11 @@ Definition Zgcd_pos : Proof. intros a Ha. apply - (Z_lt_rec + (Zlt_0_rec (fun a:Z => forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0})); try assumption. intro x; case x. -intros _ b; exists (Zabs b). +intros _ _ b; exists (Zabs b). elim (Z_le_lt_eq_dec _ _ (Zabs_pos b)). intros H0; split. apply Zabs_ind. @@ -393,7 +393,7 @@ intros _ b; exists (Zabs b). rewrite <- (Zabs_Zsgn b); rewrite <- H0; simpl in |- *. split; [ apply Zis_gcd_0 | idtac ]; auto with zarith. -intros p Hrec b. +intros p Hrec _ b. generalize (Z_div_mod b (Zpos p)). case (Zdiv_eucl b (Zpos p)); intros q r Hqr. elim Hqr; clear Hqr; intros; auto with zarith. @@ -405,8 +405,7 @@ split; auto. rewrite H. apply Zis_gcd_for_euclid2; auto. -intros p Hrec b. -exists 0; intros. +intros p _ H b. elim H; auto. Defined. diff --git a/theories/ZArith/Zorder.v b/theories/ZArith/Zorder.v index 27eb02cd..b81cc580 100644 --- a/theories/ZArith/Zorder.v +++ b/theories/ZArith/Zorder.v @@ -5,7 +5,7 @@ (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zorder.v,v 1.6.2.3 2005/03/29 15:35:12 herbelin Exp $ i*) +(*i $Id: Zorder.v 6983 2005-05-02 10:47:51Z herbelin $ i*) (** Binary Integers (Pierre Crégut (CNET, Lannion, France) *) @@ -905,23 +905,23 @@ Qed. (** Simplification of square wrt order *) Lemma Zgt_square_simpl : - forall n m:Z, n >= 0 -> m >= 0 -> n * n > m * m -> n > m. + forall n m:Z, n >= 0 -> n * n > m * m -> n > m. Proof. -intros x y H0 H1 H2. -case (dec_Zlt y x). +intros n m H0 H1. +case (dec_Zlt m n). intro; apply Zlt_gt; trivial. -intros H3; cut (y >= x). +intros H2; cut (m >= n). intros H. -elim Zgt_not_le with (1 := H2). +elim Zgt_not_le with (1 := H1). apply Zge_le. apply Zmult_ge_compat; auto. apply Znot_lt_ge; trivial. Qed. Lemma Zlt_square_simpl : - forall n m:Z, 0 <= n -> 0 <= m -> m * m < n * n -> m < n. + forall n m:Z, 0 <= n -> m * m < n * n -> m < n. Proof. -intros x y H0 H1 H2. +intros x y H0 H1. apply Zgt_lt. apply Zgt_square_simpl; try apply Zle_ge; try apply Zlt_gt; assumption. Qed. @@ -967,5 +967,17 @@ intros n m H; apply Zplus_lt_reg_l with (p := - m); rewrite Zplus_opp_l; rewrite Zplus_comm; exact H. Qed. +Lemma Zle_0_minus_le : forall n m:Z, 0 <= n - m -> m <= n. +Proof. +intros n m H; apply Zplus_le_reg_l with (p := - m); rewrite Zplus_opp_l; + rewrite Zplus_comm; exact H. +Qed. + +Lemma Zle_minus_le_0 : forall n m:Z, m <= n -> 0 <= n - m. +Proof. +intros n m H; unfold Zminus; apply Zplus_le_reg_r with (p := m); +rewrite <- Zplus_assoc; rewrite Zplus_opp_l; rewrite Zplus_0_r; exact H. +Qed. + (* For compatibility *) Notation Zlt_O_minus_lt := Zlt_0_minus_lt (only parsing). diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v index e5bf8b04..70a2bd45 100644 --- a/theories/ZArith/Zpower.v +++ b/theories/ZArith/Zpower.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zpower.v,v 1.11.2.1 2004/07/16 19:31:22 herbelin Exp $ i*) +(*i $Id: Zpower.v 5920 2004-07-16 20:01:26Z herbelin $ i*) Require Import ZArith_base. Require Import Omega. diff --git a/theories/ZArith/Zsqrt.v b/theories/ZArith/Zsqrt.v index 583c5828..cf4acb5f 100644 --- a/theories/ZArith/Zsqrt.v +++ b/theories/ZArith/Zsqrt.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(* $Id: Zsqrt.v,v 1.11.2.1 2004/07/16 19:31:22 herbelin Exp $ *) +(* $Id: Zsqrt.v 6199 2004-10-11 11:39:18Z herbelin $ *) Require Import Omega. Require Export ZArith_base. @@ -22,12 +22,12 @@ Ltac compute_POS := match goal with | |- context [(Zpos (xI ?X1))] => match constr:X1 with - | context [1%positive] => fail + | context [1%positive] => fail 1 | _ => rewrite (BinInt.Zpos_xI X1) end | |- context [(Zpos (xO ?X1))] => match constr:X1 with - | context [1%positive] => fail + | context [1%positive] => fail 1 | _ => rewrite (BinInt.Zpos_xO X1) end end. diff --git a/theories/ZArith/Zwf.v b/theories/ZArith/Zwf.v index 8633986b..4ff663fb 100644 --- a/theories/ZArith/Zwf.v +++ b/theories/ZArith/Zwf.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(* $Id: Zwf.v,v 1.7.2.1 2004/07/16 19:31:22 herbelin Exp $ *) +(* $Id: Zwf.v 5920 2004-07-16 20:01:26Z herbelin $ *) Require Import ZArith_base. Require Export Wf_nat. diff --git a/theories/ZArith/auxiliary.v b/theories/ZArith/auxiliary.v index ecd2daab..28cbd1e4 100644 --- a/theories/ZArith/auxiliary.v +++ b/theories/ZArith/auxiliary.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: auxiliary.v,v 1.12.2.1 2004/07/16 19:31:22 herbelin Exp $ i*) +(*i $Id: auxiliary.v 5920 2004-07-16 20:01:26Z herbelin $ i*) (** Binary Integers (Pierre Crégut, CNET, Lannion, France) *) |