summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zpower.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zpower.v')
-rw-r--r--theories/ZArith/Zpower.v26
1 files changed, 13 insertions, 13 deletions
diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v
index 27f0cfd2..747bd4fd 100644
--- a/theories/ZArith/Zpower.v
+++ b/theories/ZArith/Zpower.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -25,7 +25,7 @@ Local Open Scope Z_scope.
(** [Zpower_nat z n] is the n-th power of [z] when [n] is an unary
integer (type [nat]) and [z] a signed integer (type [Z]) *)
-Definition Zpower_nat (z:Z) (n:nat) := nat_iter n (Z.mul z) 1.
+Definition Zpower_nat (z:Z) := nat_rect _ 1 (fun _ => Z.mul z).
Lemma Zpower_nat_0_r z : Zpower_nat z 0 = 1.
Proof. reflexivity. Qed.
@@ -42,7 +42,7 @@ Lemma Zpower_nat_is_exp :
Proof.
induction n.
- intros. now rewrite Zpower_nat_0_r, Z.mul_1_l.
- - intros. simpl. now rewrite 2 Zpower_nat_succ_r, IHn, Z.mul_assoc.
+ - intros. simpl. now rewrite IHn, Z.mul_assoc.
Qed.
(** Conversions between powers of unary and binary integers *)
@@ -94,12 +94,12 @@ Section Powers_of_2.
calculus is possible. [shift n m] computes [2^n * m], i.e.
[m] shifted by [n] positions *)
- Definition shift_nat (n:nat) (z:positive) := nat_iter n xO z.
- Definition shift_pos (n z:positive) := Pos.iter n xO z.
+ Definition shift_nat (n:nat) (z:positive) := nat_rect _ z (fun _ => xO) n.
+ Definition shift_pos (n z:positive) := Pos.iter xO z n.
Definition shift (n:Z) (z:positive) :=
match n with
| Z0 => z
- | Zpos p => Pos.iter p xO z
+ | Zpos p => Pos.iter xO z p
| Zneg p => z
end.
@@ -154,7 +154,7 @@ Section Powers_of_2.
Lemma shift_nat_plus n m x :
shift_nat (n + m) x = shift_nat n (shift_nat m x).
Proof.
- apply iter_nat_plus.
+ induction n; simpl; now f_equal.
Qed.
Theorem shift_nat_correct n x :
@@ -247,20 +247,20 @@ Section power_div_with_rest.
end, 2 * d).
Definition Zdiv_rest (x:Z) (p:positive) :=
- let (qr, d) := Pos.iter p Zdiv_rest_aux (x, 0, 1) in qr.
+ let (qr, d) := Pos.iter Zdiv_rest_aux (x, 0, 1) p in qr.
Lemma Zdiv_rest_correct1 (x:Z) (p:positive) :
- let (_, d) := Pos.iter p Zdiv_rest_aux (x, 0, 1) in
+ let (_, d) := Pos.iter Zdiv_rest_aux (x, 0, 1) p in
d = two_power_pos p.
Proof.
rewrite Pos2Nat.inj_iter, two_power_pos_nat.
induction (Pos.to_nat p); simpl; trivial.
- destruct (nat_iter n Zdiv_rest_aux (x,0,1)) as ((q,r),d).
+ destruct (nat_rect _ _ _ _) as ((q,r),d).
unfold Zdiv_rest_aux. rewrite two_power_nat_S; now f_equal.
Qed.
Lemma Zdiv_rest_correct2 (x:Z) (p:positive) :
- let '(q,r,d) := Pos.iter p Zdiv_rest_aux (x, 0, 1) in
+ let '(q,r,d) := Pos.iter Zdiv_rest_aux (x, 0, 1) p in
x = q * d + r /\ 0 <= r < d.
Proof.
apply Pos.iter_invariant; [|omega].
@@ -287,7 +287,7 @@ Section power_div_with_rest.
Lemma Zdiv_rest_correct (x:Z) (p:positive) : Zdiv_rest_proofs x p.
Proof.
generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
- destruct (Pos.iter p Zdiv_rest_aux (x, 0, 1)) as ((q,r),d).
+ destruct (Pos.iter Zdiv_rest_aux (x, 0, 1) p) as ((q,r),d).
intros (H1,(H2,H3)) ->. now exists q r.
Qed.
@@ -299,7 +299,7 @@ Section power_div_with_rest.
Proof.
unfold Zdiv_rest.
generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
- destruct (Pos.iter p Zdiv_rest_aux (x, 0, 1)) as ((q,r),d).
+ destruct (Pos.iter Zdiv_rest_aux (x, 0, 1) p) as ((q,r),d).
intros H ->. now rewrite two_power_pos_equiv in H.
Qed.