summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zpow_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zpow_facts.v')
-rw-r--r--theories/ZArith/Zpow_facts.v516
1 files changed, 145 insertions, 371 deletions
diff --git a/theories/ZArith/Zpow_facts.v b/theories/ZArith/Zpow_facts.v
index 7879fe42..8ff641a3 100644
--- a/theories/ZArith/Zpow_facts.v
+++ b/theories/ZArith/Zpow_facts.v
@@ -1,298 +1,112 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zpow_facts.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
-Require Import ZArith_base.
-Require Import ZArithRing.
-Require Import Zcomplements.
+Require Import ZArith_base ZArithRing Zcomplements Zdiv Znumtheory.
Require Export Zpower.
-Require Import Zdiv.
-Require Import Znumtheory.
-Open Local Scope Z_scope.
+Local Open Scope Z_scope.
-Lemma Zpower_pos_1_r: forall x, Zpower_pos x 1 = x.
-Proof.
- intros x; unfold Zpower_pos; simpl; auto with zarith.
-Qed.
+(** Properties of the power function over [Z] *)
-Lemma Zpower_pos_1_l: forall p, Zpower_pos 1 p = 1.
-Proof.
- induction p.
- (* xI *)
- rewrite xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l.
- repeat rewrite Zpower_pos_is_exp.
- rewrite Zpower_pos_1_r, IHp; auto.
- (* xO *)
- rewrite <- Pplus_diag.
- repeat rewrite Zpower_pos_is_exp.
- rewrite IHp; auto.
- (* xH *)
- rewrite Zpower_pos_1_r; auto.
-Qed.
+(** Nota: the usual properties of [Z.pow] are now already provided
+ by [BinInt.Z]. Only remain here some compatibility elements,
+ as well as more specific results about power and modulo and/or
+ primality. *)
-Lemma Zpower_pos_0_l: forall p, Zpower_pos 0 p = 0.
-Proof.
- induction p.
- change (xI p) with (1 + (xO p))%positive.
- rewrite Zpower_pos_is_exp, Zpower_pos_1_r; auto.
- rewrite <- Pplus_diag.
- rewrite Zpower_pos_is_exp, IHp; auto.
- rewrite Zpower_pos_1_r; auto.
-Qed.
+Lemma Zpower_pos_1_r x : Z.pow_pos x 1 = x.
+Proof (Z.pow_1_r x).
-Lemma Zpower_pos_pos: forall x p,
- 0 < x -> 0 < Zpower_pos x p.
-Proof.
- induction p; intros.
- (* xI *)
- rewrite xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l.
- repeat rewrite Zpower_pos_is_exp.
- rewrite Zpower_pos_1_r.
- repeat apply Zmult_lt_0_compat; auto.
- (* xO *)
- rewrite <- Pplus_diag.
- repeat rewrite Zpower_pos_is_exp.
- repeat apply Zmult_lt_0_compat; auto.
- (* xH *)
- rewrite Zpower_pos_1_r; auto.
-Qed.
+Lemma Zpower_pos_1_l p : Z.pow_pos 1 p = 1.
+Proof. now apply (Z.pow_1_l (Zpos p)). Qed.
+Lemma Zpower_pos_0_l p : Z.pow_pos 0 p = 0.
+Proof. now apply (Z.pow_0_l (Zpos p)). Qed.
-Theorem Zpower_1_r: forall z, z^1 = z.
-Proof.
- exact Zpower_pos_1_r.
-Qed.
-
-Theorem Zpower_1_l: forall z, 0 <= z -> 1^z = 1.
-Proof.
- destruct z; simpl; auto.
- intros; apply Zpower_pos_1_l.
- intros; compute in H; elim H; auto.
-Qed.
+Lemma Zpower_pos_pos x p : 0 < x -> 0 < Z.pow_pos x p.
+Proof. intros. now apply (Z.pow_pos_nonneg x (Zpos p)). Qed.
-Theorem Zpower_0_l: forall z, z<>0 -> 0^z = 0.
-Proof.
- destruct z; simpl; auto with zarith.
- intros; apply Zpower_pos_0_l.
-Qed.
+Notation Zpower_1_r := Z.pow_1_r (compat "8.3").
+Notation Zpower_1_l := Z.pow_1_l (compat "8.3").
+Notation Zpower_0_l := Z.pow_0_l' (compat "8.3").
+Notation Zpower_0_r := Z.pow_0_r (compat "8.3").
+Notation Zpower_2 := Z.pow_2_r (compat "8.3").
+Notation Zpower_gt_0 := Z.pow_pos_nonneg (compat "8.3").
+Notation Zpower_ge_0 := Z.pow_nonneg (compat "8.3").
+Notation Zpower_Zabs := Z.abs_pow (compat "8.3").
+Notation Zpower_Zsucc := Z.pow_succ_r (compat "8.3").
+Notation Zpower_mult := Z.pow_mul_r (compat "8.3").
+Notation Zpower_le_monotone2 := Z.pow_le_mono_r (compat "8.3").
-Theorem Zpower_0_r: forall z, z^0 = 1.
-Proof.
- simpl; auto.
-Qed.
-
-Theorem Zpower_2: forall z, z^2 = z * z.
-Proof.
- intros; ring.
-Qed.
-
-Theorem Zpower_gt_0: forall x y,
- 0 < x -> 0 <= y -> 0 < x^y.
-Proof.
- destruct y; simpl; auto with zarith.
- intros; apply Zpower_pos_pos; auto.
- intros; compute in H0; elim H0; auto.
-Qed.
-
-Theorem Zpower_Zabs: forall a b, Zabs (a^b) = (Zabs a)^b.
-Proof.
- intros a b; case (Zle_or_lt 0 b).
- intros Hb; pattern b; apply natlike_ind; auto with zarith.
- intros x Hx Hx1; unfold Zsucc.
- (repeat rewrite Zpower_exp); auto with zarith.
- rewrite Zabs_Zmult; rewrite Hx1.
- f_equal; auto.
- replace (a ^ 1) with a; auto.
- simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
- simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
- case b; simpl; auto with zarith.
- intros p Hp; discriminate.
-Qed.
-
-Theorem Zpower_Zsucc: forall p n, 0 <= n -> p^(Zsucc n) = p * p^n.
-Proof.
- intros p n H.
- unfold Zsucc; rewrite Zpower_exp; auto with zarith.
- rewrite Zpower_1_r; apply Zmult_comm.
-Qed.
-
-Theorem Zpower_mult: forall p q r, 0 <= q -> 0 <= r -> p^(q*r) = (p^q)^r.
-Proof.
- intros p q r H1 H2; generalize H2; pattern r; apply natlike_ind; auto.
- intros H3; rewrite Zmult_0_r; repeat rewrite Zpower_exp_0; auto.
- intros r1 H3 H4 H5.
- unfold Zsucc; rewrite Zpower_exp; auto with zarith.
- rewrite <- H4; try rewrite Zpower_1_r; try rewrite <- Zpower_exp; try f_equal; auto with zarith.
- ring.
- apply Zle_ge; replace 0 with (0 * r1); try apply Zmult_le_compat_r; auto.
-Qed.
-
-Theorem Zpower_le_monotone: forall a b c,
+Theorem Zpower_le_monotone a b c :
0 < a -> 0 <= b <= c -> a^b <= a^c.
-Proof.
- intros a b c H (H1, H2).
- rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
- rewrite Zpower_exp; auto with zarith.
- apply Zmult_le_compat_l; auto with zarith.
- assert (0 < a ^ (c - b)); auto with zarith.
- apply Zpower_gt_0; auto with zarith.
- apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith.
-Qed.
+Proof. intros. now apply Z.pow_le_mono_r. Qed.
-Theorem Zpower_lt_monotone: forall a b c,
+Theorem Zpower_lt_monotone a b c :
1 < a -> 0 <= b < c -> a^b < a^c.
-Proof.
- intros a b c H (H1, H2).
- rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
- rewrite Zpower_exp; auto with zarith.
- apply Zmult_lt_compat_l; auto with zarith.
- apply Zpower_gt_0; auto with zarith.
- assert (0 < a ^ (c - b)); auto with zarith.
- apply Zpower_gt_0; auto with zarith.
- apply Zlt_le_trans with (a ^1); auto with zarith.
- rewrite Zpower_1_r; auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
-Qed.
-
-Theorem Zpower_gt_1 : forall x y,
- 1 < x -> 0 < y -> 1 < x^y.
-Proof.
- intros x y H1 H2.
- replace 1 with (x ^ 0) by apply Zpower_0_r.
- apply Zpower_lt_monotone; auto with zarith.
-Qed.
+Proof. intros. apply Z.pow_lt_mono_r; auto with zarith. Qed.
-Theorem Zpower_ge_0: forall x y, 0 <= x -> 0 <= x^y.
-Proof.
- intros x y; case y; auto with zarith.
- simpl ; auto with zarith.
- intros p H1; assert (H: 0 <= Zpos p); auto with zarith.
- generalize H; pattern (Zpos p); apply natlike_ind; auto with zarith.
- intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.
- apply Zmult_le_0_compat; auto with zarith.
- generalize H1; case x; compute; intros; auto; try discriminate.
-Qed.
-
-Theorem Zpower_le_monotone2:
- forall a b c, 0 < a -> b <= c -> a^b <= a^c.
-Proof.
- intros a b c H H2.
- destruct (Z_le_gt_dec 0 b).
- apply Zpower_le_monotone; auto.
- replace (a^b) with 0.
- destruct (Z_le_gt_dec 0 c).
- destruct (Zle_lt_or_eq _ _ z0).
- apply Zlt_le_weak;apply Zpower_gt_0;trivial.
- rewrite <- H0;simpl;auto with zarith.
- replace (a^c) with 0. auto with zarith.
- destruct c;trivial;unfold Zgt in z0;discriminate z0.
- destruct b;trivial;unfold Zgt in z;discriminate z.
-Qed.
+Theorem Zpower_gt_1 x y : 1 < x -> 0 < y -> 1 < x^y.
+Proof. apply Z.pow_gt_1. Qed.
-Theorem Zmult_power: forall p q r, 0 <= r ->
- (p*q)^r = p^r * q^r.
-Proof.
- intros p q r H1; generalize H1; pattern r; apply natlike_ind; auto.
- clear r H1; intros r H1 H2 H3.
- unfold Zsucc; rewrite Zpower_exp; auto with zarith.
- rewrite H2; repeat rewrite Zpower_exp; auto with zarith; ring.
-Qed.
+Theorem Zmult_power p q r : 0 <= r -> (p*q)^r = p^r * q^r.
+Proof. intros. apply Z.pow_mul_l. Qed.
-Hint Resolve Zpower_ge_0 Zpower_gt_0: zarith.
+Hint Resolve Z.pow_nonneg Z.pow_pos_nonneg : zarith.
-Theorem Zpower_le_monotone3: forall a b c,
+Theorem Zpower_le_monotone3 a b c :
0 <= c -> 0 <= a <= b -> a^c <= b^c.
-Proof.
- intros a b c H (H1, H2).
- generalize H; pattern c; apply natlike_ind; auto.
- intros x HH HH1 _; unfold Zsucc; repeat rewrite Zpower_exp; auto with zarith.
- repeat rewrite Zpower_1_r.
- apply Zle_trans with (a^x * b); auto with zarith.
-Qed.
+Proof. intros. now apply Z.pow_le_mono_l. Qed.
-Lemma Zpower_le_monotone_inv: forall a b c,
+Lemma Zpower_le_monotone_inv a b c :
1 < a -> 0 < b -> a^b <= a^c -> b <= c.
Proof.
- intros a b c H H0 H1.
- destruct (Z_le_gt_dec b c);trivial.
- assert (2 <= a^b).
- apply Zle_trans with (2^b).
- pattern 2 at 1;replace 2 with (2^1);trivial.
- apply Zpower_le_monotone;auto with zarith.
- apply Zpower_le_monotone3;auto with zarith.
- assert (c > 0).
- destruct (Z_le_gt_dec 0 c);trivial.
- destruct (Zle_lt_or_eq _ _ z0);auto with zarith.
- rewrite <- H3 in H1;simpl in H1; exfalso;omega.
- destruct c;try discriminate z0. simpl in H1. exfalso;omega.
- assert (H4 := Zpower_lt_monotone a c b H). exfalso;omega.
+ intros Ha Hb H. apply (Z.pow_le_mono_r_iff a); trivial.
+ apply Z.lt_le_incl; apply (Z.pow_gt_1 a); trivial.
+ apply Z.lt_le_trans with (a^b); trivial. now apply Z.pow_gt_1.
Qed.
-Theorem Zpower_nat_Zpower: forall p q, 0 <= q ->
- p^q = Zpower_nat p (Zabs_nat q).
-Proof.
- intros p1 q1; case q1; simpl.
- intros _; exact (refl_equal _).
- intros p2 _; apply Zpower_pos_nat.
- intros p2 H1; case H1; auto.
-Qed.
+Notation Zpower_nat_Zpower := Zpower_nat_Zpower (only parsing).
-Theorem Zpower2_lt_lin: forall n, 0 <= n -> n < 2^n.
-Proof.
- intros n; apply (natlike_ind (fun n => n < 2 ^n)); clear n.
- simpl; auto with zarith.
- intros n H1 H2; unfold Zsucc.
- case (Zle_lt_or_eq _ _ H1); clear H1; intros H1.
- apply Zle_lt_trans with (n + n); auto with zarith.
- rewrite Zpower_exp; auto with zarith.
- rewrite Zpower_1_r.
- assert (tmp: forall p, p * 2 = p + p); intros; try ring;
- rewrite tmp; auto with zarith.
- subst n; simpl; unfold Zpower_pos; simpl; auto with zarith.
-Qed.
+Theorem Zpower2_lt_lin n : 0 <= n -> n < 2^n.
+Proof. intros. now apply Z.pow_gt_lin_r. Qed.
-Theorem Zpower2_le_lin: forall n, 0 <= n -> n <= 2^n.
-Proof.
- intros; apply Zlt_le_weak; apply Zpower2_lt_lin; auto.
-Qed.
+Theorem Zpower2_le_lin n : 0 <= n -> n <= 2^n.
+Proof. intros. apply Z.lt_le_incl. now apply Z.pow_gt_lin_r. Qed.
-Lemma Zpower2_Psize :
- forall n p, Zpos p < 2^(Z_of_nat n) <-> (Psize p <= n)%nat.
+Lemma Zpower2_Psize n p :
+ Zpos p < 2^(Z.of_nat n) <-> (Pos.size_nat p <= n)%nat.
Proof.
- induction n.
- destruct p; split; intros H; discriminate H || inversion H.
- destruct p; simpl Psize.
- rewrite inj_S, Zpower_Zsucc; auto with zarith.
- rewrite Zpos_xI; specialize IHn with p; omega.
- rewrite inj_S, Zpower_Zsucc; auto with zarith.
- rewrite Zpos_xO; specialize IHn with p; omega.
- split; auto with arith.
- intros _; apply Zpower_gt_1; auto with zarith.
- rewrite inj_S; generalize (Zle_0_nat n); omega.
+ revert p; induction n.
+ destruct p; now split.
+ assert (Hn := Nat2Z.is_nonneg n).
+ destruct p; simpl Pos.size_nat.
+ - specialize IHn with p.
+ rewrite Pos2Z.inj_xI, Nat2Z.inj_succ, Z.pow_succ_r; omega.
+ - specialize IHn with p.
+ rewrite Pos2Z.inj_xO, Nat2Z.inj_succ, Z.pow_succ_r; omega.
+ - split; auto with zarith.
+ intros _. apply Z.pow_gt_1. easy.
+ now rewrite Nat2Z.inj_succ, Z.lt_succ_r.
Qed.
-(** * Zpower and modulo *)
+(** * Z.pow and modulo *)
-Theorem Zpower_mod: forall p q n, 0 < n ->
- (p^q) mod n = ((p mod n)^q) mod n.
+Theorem Zpower_mod p q n :
+ 0 < n -> (p^q) mod n = ((p mod n)^q) mod n.
Proof.
- intros p q n Hn; case (Zle_or_lt 0 q); intros H1.
- generalize H1; pattern q; apply natlike_ind; auto.
- intros q1 Hq1 Rec _; unfold Zsucc; repeat rewrite Zpower_exp; repeat rewrite Zpower_1_r; auto with zarith.
- rewrite (fun x => (Zmult_mod x p)); try rewrite Rec; auto with zarith.
- rewrite (fun x y => (Zmult_mod (x ^y))); try f_equal; auto with zarith.
- f_equal; auto; apply sym_equal; apply Zmod_mod; auto with zarith.
- generalize H1; case q; simpl; auto.
- intros; discriminate.
+ intros Hn; destruct (Z.le_gt_cases 0 q) as [H1|H1].
+ - pattern q; apply natlike_ind; trivial.
+ clear q H1. intros q Hq Rec. rewrite !Z.pow_succ_r; trivial.
+ rewrite Z.mul_mod_idemp_l; auto with zarith.
+ rewrite Z.mul_mod, Rec, <- Z.mul_mod; auto with zarith.
+ - rewrite !Z.pow_neg_r; auto with zarith.
Qed.
-(** A direct way to compute Zpower modulo **)
+(** A direct way to compute Z.pow modulo **)
Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) : Z :=
match m with
@@ -313,153 +127,113 @@ Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) : Z :=
Definition Zpow_mod a m n :=
match m with
- | 0 => 1
+ | 0 => 1 mod n
| Zpos p => Zpow_mod_pos a p n
| Zneg p => 0
end.
-Theorem Zpow_mod_pos_correct: forall a m n, 0 < n ->
- Zpow_mod_pos a m n = (Zpower_pos a m) mod n.
+Theorem Zpow_mod_pos_correct a m n :
+ n <> 0 -> Zpow_mod_pos a m n = (Z.pow_pos a m) mod n.
Proof.
- intros a m; elim m; simpl; auto.
- intros p Rec n H1; rewrite xI_succ_xO, Pplus_one_succ_r, <-Pplus_diag; auto.
- repeat rewrite Zpower_pos_is_exp; auto.
- repeat rewrite Rec; auto.
- rewrite Zpower_pos_1_r.
- repeat rewrite (fun x => (Zmult_mod x a)); auto with zarith.
- rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
- case (Zpower_pos a p mod n); auto.
- intros p Rec n H1; rewrite <- Pplus_diag; auto.
- repeat rewrite Zpower_pos_is_exp; auto.
- repeat rewrite Rec; auto.
- rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
- case (Zpower_pos a p mod n); auto.
- unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto with zarith.
+ intros Hn. induction m.
+ - rewrite Pos.xI_succ_xO at 2. rewrite <- Pos.add_1_r, <- Pos.add_diag.
+ rewrite 2 Zpower_pos_is_exp, Zpower_pos_1_r.
+ rewrite Z.mul_mod, (Z.mul_mod (Z.pow_pos a m)) by trivial.
+ rewrite <- IHm, <- Z.mul_mod by trivial.
+ simpl. now destruct (Zpow_mod_pos a m n).
+ - rewrite <- Pos.add_diag at 2.
+ rewrite Zpower_pos_is_exp.
+ rewrite Z.mul_mod by trivial.
+ rewrite <- IHm.
+ simpl. now destruct (Zpow_mod_pos a m n).
+ - now rewrite Zpower_pos_1_r.
Qed.
-Theorem Zpow_mod_correct: forall a m n, 1 < n -> 0 <= m ->
- Zpow_mod a m n = (a ^ m) mod n.
+Theorem Zpow_mod_correct a m n :
+ n <> 0 -> Zpow_mod a m n = (a ^ m) mod n.
Proof.
- intros a m n; case m; simpl.
- intros; apply sym_equal; apply Zmod_small; auto with zarith.
- intros; apply Zpow_mod_pos_correct; auto with zarith.
- intros p H H1; case H1; auto.
+ intros Hn. destruct m; simpl.
+ - trivial.
+ - apply Zpow_mod_pos_correct; auto with zarith.
+ - rewrite Z.mod_0_l; auto with zarith.
Qed.
(* Complements about power and number theory. *)
-Lemma Zpower_divide: forall p q, 0 < q -> (p | p ^ q).
+Lemma Zpower_divide p q : 0 < q -> (p | p ^ q).
Proof.
- intros p q H; exists (p ^(q - 1)).
- pattern p at 3; rewrite <- (Zpower_1_r p); rewrite <- Zpower_exp; try f_equal; auto with zarith.
+ exists (p^(q - 1)).
+ rewrite Z.mul_comm, <- Z.pow_succ_r; f_equal; auto with zarith.
Qed.
-Theorem rel_prime_Zpower_r: forall i p q, 0 < i ->
- rel_prime p q -> rel_prime p (q^i).
+Theorem rel_prime_Zpower_r i p q :
+ 0 <= i -> rel_prime p q -> rel_prime p (q^i).
Proof.
- intros i p q Hi Hpq; generalize Hi; pattern i; apply natlike_ind; auto with zarith; clear i Hi.
- intros H; contradict H; auto with zarith.
- intros i Hi Rec _; rewrite Zpower_Zsucc; auto.
+ intros Hi Hpq; pattern i; apply natlike_ind; auto with zarith.
+ simpl. apply rel_prime_sym, rel_prime_1.
+ clear i Hi. intros i Hi Rec; rewrite Z.pow_succ_r; auto.
apply rel_prime_mult; auto.
- case Zle_lt_or_eq with (1 := Hi); intros Hi1; subst; auto.
- rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1.
Qed.
-Theorem rel_prime_Zpower: forall i j p q, 0 <= i -> 0 <= j ->
- rel_prime p q -> rel_prime (p^i) (q^j).
+Theorem rel_prime_Zpower i j p q :
+ 0 <= i -> 0 <= j -> rel_prime p q -> rel_prime (p^i) (q^j).
Proof.
- intros i j p q Hi; generalize Hi j p q; pattern i; apply natlike_ind; auto with zarith; clear i Hi j p q.
- intros _ j p q H H1; rewrite Zpower_0_r; apply rel_prime_1.
- intros n Hn Rec _ j p q Hj Hpq.
- rewrite Zpower_Zsucc; auto.
- case Zle_lt_or_eq with (1 := Hj); intros Hj1; subst.
- apply rel_prime_sym; apply rel_prime_mult; auto.
- apply rel_prime_sym; apply rel_prime_Zpower_r; auto with arith.
- apply rel_prime_sym; apply Rec; auto.
- rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1.
+ intros Hi Hj H. apply rel_prime_Zpower_r; trivial.
+ apply rel_prime_sym. apply rel_prime_Zpower_r; trivial.
+ now apply rel_prime_sym.
Qed.
-Theorem prime_power_prime: forall p q n, 0 <= n ->
- prime p -> prime q -> (p | q^n) -> p = q.
+Theorem prime_power_prime p q n :
+ 0 <= n -> prime p -> prime q -> (p | q^n) -> p = q.
Proof.
- intros p q n Hn Hp Hq; pattern n; apply natlike_ind; auto; clear n Hn.
- rewrite Zpower_0_r; intros.
- assert (2<=p) by (apply prime_ge_2; auto).
- assert (p<=1) by (apply Zdivide_le; auto with zarith).
- omega.
- intros n1 H H1.
- unfold Zsucc; rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith.
- assert (2<=p) by (apply prime_ge_2; auto).
- assert (2<=q) by (apply prime_ge_2; auto).
- intros H3; case prime_mult with (2 := H3); auto.
- intros; apply prime_div_prime; auto.
+ intros Hn Hp Hq; pattern n; apply natlike_ind; auto; clear n Hn.
+ - simpl; intros.
+ assert (2<=p) by (apply prime_ge_2; auto).
+ assert (p<=1) by (apply Z.divide_pos_le; auto with zarith).
+ omega.
+ - intros n Hn Rec.
+ rewrite Z.pow_succ_r by trivial. intros.
+ assert (2<=p) by (apply prime_ge_2; auto).
+ assert (2<=q) by (apply prime_ge_2; auto).
+ destruct prime_mult with (2 := H); auto.
+ apply prime_div_prime; auto.
Qed.
-Theorem Zdivide_power_2: forall x p n, 0 <= n -> 0 <= x -> prime p ->
- (x | p^n) -> exists m, x = p^m.
+Theorem Zdivide_power_2 x p n :
+ 0 <= n -> 0 <= x -> prime p -> (x | p^n) -> exists m, x = p^m.
Proof.
- intros x p n Hn Hx; revert p n Hn; generalize Hx.
+ intros Hn Hx; revert p n Hn. generalize Hx.
pattern x; apply Z_lt_induction; auto.
clear x Hx; intros x IH Hx p n Hn Hp H.
- case Zle_lt_or_eq with (1 := Hx); auto; clear Hx; intros Hx; subst.
- case (Zle_lt_or_eq 1 x); auto with zarith; clear Hx; intros Hx; subst.
+ Z.le_elim Hx; subst.
+ apply Z.le_succ_l in Hx; simpl in Hx.
+ Z.le_elim Hx; subst.
(* x > 1 *)
- case (prime_dec x); intros H2.
- exists 1; rewrite Zpower_1_r; apply prime_power_prime with n; auto.
- case not_prime_divide with (2 := H2); auto.
- intros p1 ((H3, H4), (q1, Hq1)); subst.
- case (IH p1) with p n; auto with zarith.
- apply Zdivide_trans with (2 := H); exists q1; auto with zarith.
- intros r1 Hr1.
- case (IH q1) with p n; auto with zarith.
- case (Zle_lt_or_eq 0 q1).
- apply Zmult_le_0_reg_r with p1; auto with zarith.
+ case (prime_dec x); intros Hpr.
+ exists 1; rewrite Z.pow_1_r; apply prime_power_prime with n; auto.
+ case not_prime_divide with (2 := Hpr); auto.
+ intros p1 ((Hp1, Hpq1),(q1,->)).
+ assert (Hq1 : 0 < q1) by (apply Z.mul_lt_mono_pos_r with p1; auto with zarith).
+ destruct (IH p1) with p n as (r1,Hr1); auto with zarith.
+ transitivity (q1 * p1); trivial. exists q1; auto with zarith.
+ destruct (IH q1) with p n as (r2,Hr2); auto with zarith.
split; auto with zarith.
- pattern q1 at 1; replace q1 with (q1 * 1); auto with zarith.
- apply Zmult_lt_compat_l; auto with zarith.
- intros H5; subst; contradict Hx; auto with zarith.
- apply Zmult_le_0_reg_r with p1; auto with zarith.
- apply Zdivide_trans with (2 := H); exists p1; auto with zarith.
- intros r2 Hr2; exists (r2 + r1); subst.
- apply sym_equal; apply Zpower_exp.
- generalize Hx; case r2; simpl; auto with zarith.
- intros; red; simpl; intros; discriminate.
- generalize H3; case r1; simpl; auto with zarith.
- intros; red; simpl; intros; discriminate.
+ rewrite <- (Z.mul_1_r q1) at 1.
+ apply Z.mul_lt_mono_pos_l; auto with zarith.
+ transitivity (q1 * p1); trivial. exists p1; auto with zarith.
+ exists (r2 + r1); subst.
+ symmetry. apply Z.pow_add_r.
+ generalize Hq1; case r2; now auto with zarith.
+ generalize Hp1; case r1; now auto with zarith.
(* x = 1 *)
- exists 0; rewrite Zpower_0_r; auto.
+ exists 0; rewrite Z.pow_0_r; auto.
(* x = 0 *)
- exists n; destruct H; rewrite Zmult_0_r in H; auto.
+ exists n; destruct H; rewrite Z.mul_0_r in H; auto.
Qed.
-(** * Zsquare: a direct definition of [z^2] *)
-
-Fixpoint Psquare (p: positive): positive :=
- match p with
- | xH => xH
- | xO p => xO (xO (Psquare p))
- | xI p => xI (xO (Pplus (Psquare p) p))
- end.
-
-Definition Zsquare p :=
- match p with
- | Z0 => Z0
- | Zpos p => Zpos (Psquare p)
- | Zneg p => Zpos (Psquare p)
- end.
-
-Theorem Psquare_correct: forall p, Psquare p = (p * p)%positive.
-Proof.
- induction p; simpl; auto; f_equal; rewrite IHp.
- apply trans_equal with (xO p + xO (p*p))%positive; auto.
- rewrite (Pplus_comm (xO p)); auto.
- rewrite Pmult_xI_permute_r; rewrite Pplus_assoc.
- f_equal; auto.
- symmetry; apply Pplus_diag.
- symmetry; apply Pmult_xO_permute_r.
-Qed.
+(** * Z.square: a direct definition of [z^2] *)
-Theorem Zsquare_correct: forall p, Zsquare p = p * p.
-Proof.
- intro p; case p; simpl; auto; intros p1; rewrite Psquare_correct; auto.
-Qed.
+Notation Psquare := Pos.square (compat "8.3").
+Notation Zsquare := Z.square (compat "8.3").
+Notation Psquare_correct := Pos.square_spec (compat "8.3").
+Notation Zsquare_correct := Z.square_spec (compat "8.3").