diff options
Diffstat (limited to 'theories/ZArith/Znat.v')
-rw-r--r-- | theories/ZArith/Znat.v | 37 |
1 files changed, 19 insertions, 18 deletions
diff --git a/theories/ZArith/Znat.v b/theories/ZArith/Znat.v index c5b5edc1..dfd9b545 100644 --- a/theories/ZArith/Znat.v +++ b/theories/ZArith/Znat.v @@ -1,3 +1,4 @@ +(* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) @@ -6,7 +7,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Znat.v 10726 2008-03-28 18:15:23Z notin $ i*) +(*i $Id$ i*) (** Binary Integers (Pierre Crégut, CNET, Lannion, France) *) @@ -57,15 +58,15 @@ Proof. | discriminate H0 | discriminate H0 | simpl in H0; injection H0; - do 2 rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ; + do 2 rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ; intros E; rewrite E; auto with arith ]. -Qed. +Qed. Theorem inj_eq_rev : forall n m:nat, Z_of_nat n = Z_of_nat m -> n = m. Proof. intros x y H. destruct (eq_nat_dec x y) as [H'|H']; auto. - elimtype False. + exfalso. exact (inj_neq _ _ H' H). Qed. @@ -90,7 +91,7 @@ Qed. Theorem inj_lt : forall n m:nat, (n < m)%nat -> Z_of_nat n < Z_of_nat m. Proof. - intros x y H; apply Zgt_lt; apply Zlt_succ_gt; rewrite <- inj_S; apply inj_le; + intros x y H; apply Zgt_lt; apply Zle_succ_gt; rewrite <- inj_S; apply inj_le; exact H. Qed. @@ -110,7 +111,7 @@ Theorem inj_le_rev : forall n m:nat, Z_of_nat n <= Z_of_nat m -> (n <= m)%nat. Proof. intros x y H. destruct (le_lt_dec x y) as [H0|H0]; auto. - elimtype False. + exfalso. assert (H1:=inj_lt _ _ H0). red in H; red in H1. rewrite <- Zcompare_antisym in H; rewrite H1 in H; auto. @@ -120,7 +121,7 @@ Theorem inj_lt_rev : forall n m:nat, Z_of_nat n < Z_of_nat m -> (n < m)%nat. Proof. intros x y H. destruct (le_lt_dec y x) as [H0|H0]; auto. - elimtype False. + exfalso. assert (H1:=inj_le _ _ H0). red in H; red in H1. rewrite <- Zcompare_antisym in H1; rewrite H in H1; auto. @@ -130,7 +131,7 @@ Theorem inj_ge_rev : forall n m:nat, Z_of_nat n >= Z_of_nat m -> (n >= m)%nat. Proof. intros x y H. destruct (le_lt_dec y x) as [H0|H0]; auto. - elimtype False. + exfalso. assert (H1:=inj_gt _ _ H0). red in H; red in H1. rewrite <- Zcompare_antisym in H; rewrite H1 in H; auto. @@ -140,7 +141,7 @@ Theorem inj_gt_rev : forall n m:nat, Z_of_nat n > Z_of_nat m -> (n > m)%nat. Proof. intros x y H. destruct (le_lt_dec x y) as [H0|H0]; auto. - elimtype False. + exfalso. assert (H1:=inj_ge _ _ H0). red in H; red in H1. rewrite <- Zcompare_antisym in H1; rewrite H in H1; auto. @@ -169,7 +170,7 @@ Proof. Qed. (** Injection and usual operations *) - + Theorem inj_plus : forall n m:nat, Z_of_nat (n + m) = Z_of_nat n + Z_of_nat m. Proof. intro x; induction x as [| n H]; intro y; destruct y as [| m]; @@ -186,7 +187,7 @@ Proof. intro x; induction x as [| n H]; [ simpl in |- *; trivial with arith | intro y; rewrite inj_S; rewrite <- Zmult_succ_l_reverse; rewrite <- H; - rewrite <- inj_plus; simpl in |- *; rewrite plus_comm; + rewrite <- inj_plus; simpl in |- *; rewrite plus_comm; trivial with arith ]. Qed. @@ -195,17 +196,17 @@ Theorem inj_minus1 : Proof. intros x y H; apply (Zplus_reg_l (Z_of_nat y)); unfold Zminus in |- *; rewrite Zplus_permute; rewrite Zplus_opp_r; rewrite <- inj_plus; - rewrite <- (le_plus_minus y x H); rewrite Zplus_0_r; + rewrite <- (le_plus_minus y x H); rewrite Zplus_0_r; trivial with arith. Qed. - + Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z_of_nat (n - m) = 0. Proof. intros x y H; rewrite not_le_minus_0; [ trivial with arith | apply gt_not_le; assumption ]. Qed. -Theorem inj_minus : forall n m:nat, +Theorem inj_minus : forall n m:nat, Z_of_nat (minus n m) = Zmax 0 (Z_of_nat n - Z_of_nat m). Proof. intros. @@ -225,7 +226,7 @@ Proof. unfold Zminus; rewrite H'; auto. Qed. -Theorem inj_min : forall n m:nat, +Theorem inj_min : forall n m:nat, Z_of_nat (min n m) = Zmin (Z_of_nat n) (Z_of_nat m). Proof. induction n; destruct m; try (compute; auto; fail). @@ -234,7 +235,7 @@ Proof. rewrite <- Zsucc_min_distr; f_equal; auto. Qed. -Theorem inj_max : forall n m:nat, +Theorem inj_max : forall n m:nat, Z_of_nat (max n m) = Zmax (Z_of_nat n) (Z_of_nat m). Proof. induction n; destruct m; try (compute; auto; fail). @@ -269,11 +270,11 @@ Proof. intros x; exists (Z_of_nat x); split; [ trivial with arith | rewrite Zmult_comm; rewrite Zmult_1_l; rewrite Zplus_0_r; - unfold Zle in |- *; elim x; intros; simpl in |- *; + unfold Zle in |- *; elim x; intros; simpl in |- *; discriminate ]. Qed. -Lemma Zpos_P_of_succ_nat : forall n:nat, +Lemma Zpos_P_of_succ_nat : forall n:nat, Zpos (P_of_succ_nat n) = Zsucc (Z_of_nat n). Proof. intros. |