diff options
Diffstat (limited to 'theories/ZArith/Znat.v')
-rw-r--r-- | theories/ZArith/Znat.v | 32 |
1 files changed, 16 insertions, 16 deletions
diff --git a/theories/ZArith/Znat.v b/theories/ZArith/Znat.v index 8031b357..20e7c2e8 100644 --- a/theories/ZArith/Znat.v +++ b/theories/ZArith/Znat.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -271,7 +271,7 @@ Qed. Lemma inj_testbit a n : Z.testbit (Z.of_N a) (Z.of_N n) = N.testbit a n. -Proof. apply Z.Private_BootStrap.testbit_of_N. Qed. +Proof. apply Z.testbit_of_N. Qed. End N2Z. @@ -426,7 +426,7 @@ Qed. Lemma inj_testbit a n : 0<=n -> Z.testbit (Z.of_N a) n = N.testbit a (Z.to_N n). -Proof. apply Z.Private_BootStrap.testbit_of_N'. Qed. +Proof. apply Z.testbit_of_N'. Qed. End Z2N. @@ -637,7 +637,7 @@ Qed. (** [Z.of_nat] and usual operations *) -Lemma inj_compare n m : (Z.of_nat n ?= Z.of_nat m) = nat_compare n m. +Lemma inj_compare n m : (Z.of_nat n ?= Z.of_nat m) = (n ?= m)%nat. Proof. now rewrite <-!nat_N_Z, N2Z.inj_compare, <- Nat2N.inj_compare. Qed. @@ -690,23 +690,23 @@ Proof. now rewrite <- !nat_N_Z, Nat2N.inj_sub, N2Z.inj_sub. Qed. -Lemma inj_pred_max n : Z.of_nat (pred n) = Z.max 0 (Z.pred (Z.of_nat n)). +Lemma inj_pred_max n : Z.of_nat (Nat.pred n) = Z.max 0 (Z.pred (Z.of_nat n)). Proof. now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred_max. Qed. -Lemma inj_pred n : (0<n)%nat -> Z.of_nat (pred n) = Z.pred (Z.of_nat n). +Lemma inj_pred n : (0<n)%nat -> Z.of_nat (Nat.pred n) = Z.pred (Z.of_nat n). Proof. rewrite nat_compare_lt, Nat2N.inj_compare. intros. now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred. Qed. -Lemma inj_min n m : Z.of_nat (min n m) = Z.min (Z.of_nat n) (Z.of_nat m). +Lemma inj_min n m : Z.of_nat (Nat.min n m) = Z.min (Z.of_nat n) (Z.of_nat m). Proof. now rewrite <- !nat_N_Z, Nat2N.inj_min, N2Z.inj_min. Qed. -Lemma inj_max n m : Z.of_nat (max n m) = Z.max (Z.of_nat n) (Z.of_nat m). +Lemma inj_max n m : Z.of_nat (Nat.max n m) = Z.max (Z.of_nat n) (Z.of_nat m). Proof. now rewrite <- !nat_N_Z, Nat2N.inj_max, N2Z.inj_max. Qed. @@ -777,13 +777,13 @@ Proof. intros. now rewrite <- !Z_N_nat, Z2N.inj_sub, N2Nat.inj_sub. Qed. -Lemma inj_pred n : Z.to_nat (Z.pred n) = pred (Z.to_nat n). +Lemma inj_pred n : Z.to_nat (Z.pred n) = Nat.pred (Z.to_nat n). Proof. now rewrite <- !Z_N_nat, Z2N.inj_pred, N2Nat.inj_pred. Qed. Lemma inj_compare n m : 0<=n -> 0<=m -> - nat_compare (Z.to_nat n) (Z.to_nat m) = (n ?= m). + (Z.to_nat n ?= Z.to_nat m)%nat = (n ?= m). Proof. intros Hn Hm. now rewrite <- Nat2Z.inj_compare, !id. Qed. @@ -798,12 +798,12 @@ Proof. intros Hn Hm. unfold Z.lt. now rewrite nat_compare_lt, inj_compare. Qed. -Lemma inj_min n m : Z.to_nat (Z.min n m) = min (Z.to_nat n) (Z.to_nat m). +Lemma inj_min n m : Z.to_nat (Z.min n m) = Nat.min (Z.to_nat n) (Z.to_nat m). Proof. now rewrite <- !Z_N_nat, Z2N.inj_min, N2Nat.inj_min. Qed. -Lemma inj_max n m : Z.to_nat (Z.max n m) = max (Z.to_nat n) (Z.to_nat m). +Lemma inj_max n m : Z.to_nat (Z.max n m) = Nat.max (Z.to_nat n) (Z.to_nat m). Proof. now rewrite <- !Z_N_nat, Z2N.inj_max, N2Nat.inj_max. Qed. @@ -876,13 +876,13 @@ Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_sub, N2Nat.inj_sub. Qed. -Lemma inj_pred n : 0<n -> Z.abs_nat (Z.pred n) = pred (Z.abs_nat n). +Lemma inj_pred n : 0<n -> Z.abs_nat (Z.pred n) = Nat.pred (Z.abs_nat n). Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_pred, N2Nat.inj_pred. Qed. Lemma inj_compare n m : 0<=n -> 0<=m -> - nat_compare (Z.abs_nat n) (Z.abs_nat m) = (n ?= m). + (Z.abs_nat n ?= Z.abs_nat m)%nat = (n ?= m). Proof. intros. now rewrite <- !Zabs_N_nat, <- N2Nat.inj_compare, Zabs2N.inj_compare. Qed. @@ -898,13 +898,13 @@ Proof. Qed. Lemma inj_min n m : 0<=n -> 0<=m -> - Z.abs_nat (Z.min n m) = min (Z.abs_nat n) (Z.abs_nat m). + Z.abs_nat (Z.min n m) = Nat.min (Z.abs_nat n) (Z.abs_nat m). Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_min, N2Nat.inj_min. Qed. Lemma inj_max n m : 0<=n -> 0<=m -> - Z.abs_nat (Z.max n m) = max (Z.abs_nat n) (Z.abs_nat m). + Z.abs_nat (Z.max n m) = Nat.max (Z.abs_nat n) (Z.abs_nat m). Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_max, N2Nat.inj_max. Qed. |