summaryrefslogtreecommitdiff
path: root/theories/ZArith/Znat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Znat.v')
-rw-r--r--theories/ZArith/Znat.v32
1 files changed, 16 insertions, 16 deletions
diff --git a/theories/ZArith/Znat.v b/theories/ZArith/Znat.v
index 8031b357..20e7c2e8 100644
--- a/theories/ZArith/Znat.v
+++ b/theories/ZArith/Znat.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -271,7 +271,7 @@ Qed.
Lemma inj_testbit a n :
Z.testbit (Z.of_N a) (Z.of_N n) = N.testbit a n.
-Proof. apply Z.Private_BootStrap.testbit_of_N. Qed.
+Proof. apply Z.testbit_of_N. Qed.
End N2Z.
@@ -426,7 +426,7 @@ Qed.
Lemma inj_testbit a n : 0<=n ->
Z.testbit (Z.of_N a) n = N.testbit a (Z.to_N n).
-Proof. apply Z.Private_BootStrap.testbit_of_N'. Qed.
+Proof. apply Z.testbit_of_N'. Qed.
End Z2N.
@@ -637,7 +637,7 @@ Qed.
(** [Z.of_nat] and usual operations *)
-Lemma inj_compare n m : (Z.of_nat n ?= Z.of_nat m) = nat_compare n m.
+Lemma inj_compare n m : (Z.of_nat n ?= Z.of_nat m) = (n ?= m)%nat.
Proof.
now rewrite <-!nat_N_Z, N2Z.inj_compare, <- Nat2N.inj_compare.
Qed.
@@ -690,23 +690,23 @@ Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_sub, N2Z.inj_sub.
Qed.
-Lemma inj_pred_max n : Z.of_nat (pred n) = Z.max 0 (Z.pred (Z.of_nat n)).
+Lemma inj_pred_max n : Z.of_nat (Nat.pred n) = Z.max 0 (Z.pred (Z.of_nat n)).
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred_max.
Qed.
-Lemma inj_pred n : (0<n)%nat -> Z.of_nat (pred n) = Z.pred (Z.of_nat n).
+Lemma inj_pred n : (0<n)%nat -> Z.of_nat (Nat.pred n) = Z.pred (Z.of_nat n).
Proof.
rewrite nat_compare_lt, Nat2N.inj_compare. intros.
now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred.
Qed.
-Lemma inj_min n m : Z.of_nat (min n m) = Z.min (Z.of_nat n) (Z.of_nat m).
+Lemma inj_min n m : Z.of_nat (Nat.min n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_min, N2Z.inj_min.
Qed.
-Lemma inj_max n m : Z.of_nat (max n m) = Z.max (Z.of_nat n) (Z.of_nat m).
+Lemma inj_max n m : Z.of_nat (Nat.max n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_max, N2Z.inj_max.
Qed.
@@ -777,13 +777,13 @@ Proof.
intros. now rewrite <- !Z_N_nat, Z2N.inj_sub, N2Nat.inj_sub.
Qed.
-Lemma inj_pred n : Z.to_nat (Z.pred n) = pred (Z.to_nat n).
+Lemma inj_pred n : Z.to_nat (Z.pred n) = Nat.pred (Z.to_nat n).
Proof.
now rewrite <- !Z_N_nat, Z2N.inj_pred, N2Nat.inj_pred.
Qed.
Lemma inj_compare n m : 0<=n -> 0<=m ->
- nat_compare (Z.to_nat n) (Z.to_nat m) = (n ?= m).
+ (Z.to_nat n ?= Z.to_nat m)%nat = (n ?= m).
Proof.
intros Hn Hm. now rewrite <- Nat2Z.inj_compare, !id.
Qed.
@@ -798,12 +798,12 @@ Proof.
intros Hn Hm. unfold Z.lt. now rewrite nat_compare_lt, inj_compare.
Qed.
-Lemma inj_min n m : Z.to_nat (Z.min n m) = min (Z.to_nat n) (Z.to_nat m).
+Lemma inj_min n m : Z.to_nat (Z.min n m) = Nat.min (Z.to_nat n) (Z.to_nat m).
Proof.
now rewrite <- !Z_N_nat, Z2N.inj_min, N2Nat.inj_min.
Qed.
-Lemma inj_max n m : Z.to_nat (Z.max n m) = max (Z.to_nat n) (Z.to_nat m).
+Lemma inj_max n m : Z.to_nat (Z.max n m) = Nat.max (Z.to_nat n) (Z.to_nat m).
Proof.
now rewrite <- !Z_N_nat, Z2N.inj_max, N2Nat.inj_max.
Qed.
@@ -876,13 +876,13 @@ Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_sub, N2Nat.inj_sub.
Qed.
-Lemma inj_pred n : 0<n -> Z.abs_nat (Z.pred n) = pred (Z.abs_nat n).
+Lemma inj_pred n : 0<n -> Z.abs_nat (Z.pred n) = Nat.pred (Z.abs_nat n).
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_pred, N2Nat.inj_pred.
Qed.
Lemma inj_compare n m : 0<=n -> 0<=m ->
- nat_compare (Z.abs_nat n) (Z.abs_nat m) = (n ?= m).
+ (Z.abs_nat n ?= Z.abs_nat m)%nat = (n ?= m).
Proof.
intros. now rewrite <- !Zabs_N_nat, <- N2Nat.inj_compare, Zabs2N.inj_compare.
Qed.
@@ -898,13 +898,13 @@ Proof.
Qed.
Lemma inj_min n m : 0<=n -> 0<=m ->
- Z.abs_nat (Z.min n m) = min (Z.abs_nat n) (Z.abs_nat m).
+ Z.abs_nat (Z.min n m) = Nat.min (Z.abs_nat n) (Z.abs_nat m).
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_min, N2Nat.inj_min.
Qed.
Lemma inj_max n m : 0<=n -> 0<=m ->
- Z.abs_nat (Z.max n m) = max (Z.abs_nat n) (Z.abs_nat m).
+ Z.abs_nat (Z.max n m) = Nat.max (Z.abs_nat n) (Z.abs_nat m).
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_max, N2Nat.inj_max.
Qed.