diff options
Diffstat (limited to 'theories/ZArith/Zmisc.v')
-rw-r--r-- | theories/ZArith/Zmisc.v | 71 |
1 files changed, 4 insertions, 67 deletions
diff --git a/theories/ZArith/Zmisc.v b/theories/ZArith/Zmisc.v index a8872bd5..ff844ec2 100644 --- a/theories/ZArith/Zmisc.v +++ b/theories/ZArith/Zmisc.v @@ -1,13 +1,11 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Zmisc.v 14641 2011-11-06 11:59:10Z herbelin $ i*) - Require Import Wf_nat. Require Import BinInt. Require Import Zcompare. @@ -20,72 +18,11 @@ Open Local Scope Z_scope. (** [n]th iteration of the function [f] *) -Fixpoint iter_pos (n:positive) (A:Type) (f:A -> A) (x:A) : A := - match n with - | xH => f x - | xO n' => iter_pos n' A f (iter_pos n' A f x) - | xI n' => f (iter_pos n' A f (iter_pos n' A f x)) - end. - -Definition iter (n:Z) (A:Type) (f:A -> A) (x:A) := - match n with - | Z0 => x - | Zpos p => iter_pos p A f x - | Zneg p => x - end. - -Theorem iter_nat_of_P : - forall (p:positive) (A:Type) (f:A -> A) (x:A), - iter_pos p A f x = iter_nat (nat_of_P p) A f x. -Proof. - intro n; induction n as [p H| p H| ]; - [ intros; simpl in |- *; rewrite (H A f x); - rewrite (H A f (iter_nat (nat_of_P p) A f x)); - rewrite (ZL6 p); symmetry in |- *; apply f_equal with (f := f); - apply iter_nat_plus - | intros; unfold nat_of_P in |- *; simpl in |- *; rewrite (H A f x); - rewrite (H A f (iter_nat (nat_of_P p) A f x)); - rewrite (ZL6 p); symmetry in |- *; apply iter_nat_plus - | simpl in |- *; auto with arith ]. -Qed. +Notation iter := @Z.iter (only parsing). Lemma iter_nat_of_Z : forall n A f x, 0 <= n -> - iter n A f x = iter_nat (Zabs_nat n) A f x. + iter n A f x = iter_nat (Z.abs_nat n) A f x. intros n A f x; case n; auto. -intros p _; unfold iter, Zabs_nat; apply iter_nat_of_P. +intros p _; unfold Z.iter, Z.abs_nat; apply iter_nat_of_P. intros p abs; case abs; trivial. Qed. - -Theorem iter_pos_plus : - forall (p q:positive) (A:Type) (f:A -> A) (x:A), - iter_pos (p + q) A f x = iter_pos p A f (iter_pos q A f x). -Proof. - intros n m; intros. - rewrite (iter_nat_of_P m A f x). - rewrite (iter_nat_of_P n A f (iter_nat (nat_of_P m) A f x)). - rewrite (iter_nat_of_P (n + m) A f x). - rewrite (nat_of_P_plus_morphism n m). - apply iter_nat_plus. -Qed. - -(** Preservation of invariants : if [f : A->A] preserves the invariant [Inv], - then the iterates of [f] also preserve it. *) - -Theorem iter_nat_invariant : - forall (n:nat) (A:Type) (f:A -> A) (Inv:A -> Prop), - (forall x:A, Inv x -> Inv (f x)) -> - forall x:A, Inv x -> Inv (iter_nat n A f x). -Proof. - simple induction n; intros; - [ trivial with arith - | simpl in |- *; apply H0 with (x := iter_nat n0 A f x); apply H; - trivial with arith ]. -Qed. - -Theorem iter_pos_invariant : - forall (p:positive) (A:Type) (f:A -> A) (Inv:A -> Prop), - (forall x:A, Inv x -> Inv (f x)) -> - forall x:A, Inv x -> Inv (iter_pos p A f x). -Proof. - intros; rewrite iter_nat_of_P; apply iter_nat_invariant; trivial with arith. -Qed. |