summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zmisc.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zmisc.v')
-rw-r--r--theories/ZArith/Zmisc.v71
1 files changed, 4 insertions, 67 deletions
diff --git a/theories/ZArith/Zmisc.v b/theories/ZArith/Zmisc.v
index a8872bd5..ff844ec2 100644
--- a/theories/ZArith/Zmisc.v
+++ b/theories/ZArith/Zmisc.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zmisc.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Import Wf_nat.
Require Import BinInt.
Require Import Zcompare.
@@ -20,72 +18,11 @@ Open Local Scope Z_scope.
(** [n]th iteration of the function [f] *)
-Fixpoint iter_pos (n:positive) (A:Type) (f:A -> A) (x:A) : A :=
- match n with
- | xH => f x
- | xO n' => iter_pos n' A f (iter_pos n' A f x)
- | xI n' => f (iter_pos n' A f (iter_pos n' A f x))
- end.
-
-Definition iter (n:Z) (A:Type) (f:A -> A) (x:A) :=
- match n with
- | Z0 => x
- | Zpos p => iter_pos p A f x
- | Zneg p => x
- end.
-
-Theorem iter_nat_of_P :
- forall (p:positive) (A:Type) (f:A -> A) (x:A),
- iter_pos p A f x = iter_nat (nat_of_P p) A f x.
-Proof.
- intro n; induction n as [p H| p H| ];
- [ intros; simpl in |- *; rewrite (H A f x);
- rewrite (H A f (iter_nat (nat_of_P p) A f x));
- rewrite (ZL6 p); symmetry in |- *; apply f_equal with (f := f);
- apply iter_nat_plus
- | intros; unfold nat_of_P in |- *; simpl in |- *; rewrite (H A f x);
- rewrite (H A f (iter_nat (nat_of_P p) A f x));
- rewrite (ZL6 p); symmetry in |- *; apply iter_nat_plus
- | simpl in |- *; auto with arith ].
-Qed.
+Notation iter := @Z.iter (only parsing).
Lemma iter_nat_of_Z : forall n A f x, 0 <= n ->
- iter n A f x = iter_nat (Zabs_nat n) A f x.
+ iter n A f x = iter_nat (Z.abs_nat n) A f x.
intros n A f x; case n; auto.
-intros p _; unfold iter, Zabs_nat; apply iter_nat_of_P.
+intros p _; unfold Z.iter, Z.abs_nat; apply iter_nat_of_P.
intros p abs; case abs; trivial.
Qed.
-
-Theorem iter_pos_plus :
- forall (p q:positive) (A:Type) (f:A -> A) (x:A),
- iter_pos (p + q) A f x = iter_pos p A f (iter_pos q A f x).
-Proof.
- intros n m; intros.
- rewrite (iter_nat_of_P m A f x).
- rewrite (iter_nat_of_P n A f (iter_nat (nat_of_P m) A f x)).
- rewrite (iter_nat_of_P (n + m) A f x).
- rewrite (nat_of_P_plus_morphism n m).
- apply iter_nat_plus.
-Qed.
-
-(** Preservation of invariants : if [f : A->A] preserves the invariant [Inv],
- then the iterates of [f] also preserve it. *)
-
-Theorem iter_nat_invariant :
- forall (n:nat) (A:Type) (f:A -> A) (Inv:A -> Prop),
- (forall x:A, Inv x -> Inv (f x)) ->
- forall x:A, Inv x -> Inv (iter_nat n A f x).
-Proof.
- simple induction n; intros;
- [ trivial with arith
- | simpl in |- *; apply H0 with (x := iter_nat n0 A f x); apply H;
- trivial with arith ].
-Qed.
-
-Theorem iter_pos_invariant :
- forall (p:positive) (A:Type) (f:A -> A) (Inv:A -> Prop),
- (forall x:A, Inv x -> Inv (f x)) ->
- forall x:A, Inv x -> Inv (iter_pos p A f x).
-Proof.
- intros; rewrite iter_nat_of_P; apply iter_nat_invariant; trivial with arith.
-Qed.