diff options
Diffstat (limited to 'theories/ZArith/Zminmax.v')
-rw-r--r-- | theories/ZArith/Zminmax.v | 82 |
1 files changed, 82 insertions, 0 deletions
diff --git a/theories/ZArith/Zminmax.v b/theories/ZArith/Zminmax.v new file mode 100644 index 00000000..ebe9318e --- /dev/null +++ b/theories/ZArith/Zminmax.v @@ -0,0 +1,82 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(*i $Id: Zminmax.v 8034 2006-02-12 22:08:04Z herbelin $ i*) + +Require Import Zmin Zmax. +Require Import BinInt Zorder. + +Open Local Scope Z_scope. + +(** *** Lattice properties of min and max on Z *) + +(** Absorption *) + +Lemma Zmin_max_absorption_r_r : forall n m, Zmax n (Zmin n m) = n. +Proof. +intros; apply Zmin_case_strong; intro; apply Zmax_case_strong; intro; + reflexivity || apply Zle_antisym; trivial. +Qed. + +Lemma Zmax_min_absorption_r_r : forall n m, Zmin n (Zmax n m) = n. +Proof. +intros; apply Zmax_case_strong; intro; apply Zmin_case_strong; intro; + reflexivity || apply Zle_antisym; trivial. +Qed. + +(** Distributivity *) + +Lemma Zmax_min_distr_r : + forall n m p, Zmax n (Zmin m p) = Zmin (Zmax n m) (Zmax n p). +Proof. +intros. +repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + reflexivity || + apply Zle_antisym; (assumption || eapply Zle_trans; eassumption). +Qed. + +Lemma Zmin_max_distr_r : + forall n m p, Zmin n (Zmax m p) = Zmax (Zmin n m) (Zmin n p). +Proof. +intros. +repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + reflexivity || + apply Zle_antisym; (assumption || eapply Zle_trans; eassumption). +Qed. + +(** Modularity *) + +Lemma Zmax_min_modular_r : + forall n m p, Zmax n (Zmin m (Zmax n p)) = Zmin (Zmax n m) (Zmax n p). +Proof. +intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + reflexivity || + apply Zle_antisym; (assumption || eapply Zle_trans; eassumption). +Qed. + +Lemma Zmin_max_modular_r : + forall n m p, Zmin n (Zmax m (Zmin n p)) = Zmax (Zmin n m) (Zmin n p). +Proof. +intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + reflexivity || + apply Zle_antisym; (assumption || eapply Zle_trans; eassumption). +Qed. + +(** Disassociativity *) + +Lemma max_min_disassoc : forall n m p, Zmin n (Zmax m p) <= Zmax (Zmin n m) p. +Proof. +intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; + apply Zle_refl || (assumption || eapply Zle_trans; eassumption). +Qed. + + + + + + + |